answersLogoWhite

0


Best Answer

Too greatly to cover in a sentence but the basics: Dimensions, Depth and (essentially) the amount of data being processed

User Avatar

Wiki User

12y ago
This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: How has computer graphics change since the first generation of computers?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about General History

How did Marcian Hoff's infention change computers?

Marcian Hoff was one of the computer scientists who developed the microprocessor in the early 1970s. Having a 'universal processor' was an important development in computer science.


What is the example of 5th generation of computers?

First Generation (1940-1956) Vacuum TubesThe first computers used vacuum tubes for circuitry and magnetic drums for memory, and were often enormous, taking up entire rooms. They were very expensive to operate and in addition to using a great deal of electricity, generated a lot of heat, which was often the cause of malfunctions.Second Generation (1956-1963) TransistorsTransistorsreplaced vacuum tubes and ushered in the second generation of computers. The transistor was invented in 1947 but did not see widespread use in computers until the late 1950s. The transistor was far superior to the vacuum tube, allowing computers to become smaller, faster, cheaper, more energy-efficient and more reliable than their first-generation predecessors. Though the transistor still generated a great deal of heat that subjected the computer to damage, it was a vast improvement over the vacuum tube. Second-generation computers still relied on punched cards for input and printouts for output.Third Generation (1964-1971) Integrated CircuitsThe development of the integrated circuit was the hallmark of the third generation of computers. Transistors were miniaturized and placed on siliconchips, called semiconductors, which drastically increased the speed and efficiency of computers.Fourth Generation (1971-Present) MicroprocessorsThe microprocessorbrought the fourth generation of computers, as thousands of integrated circuits were built onto a single silicon chip. What in the first generation filled an entire room could now fit in the palm of the hand. The Intel 4004 chip, developed in 1971, located all the components of the computer-from the central processing unit and memory to input/output controls-on a single chip.Fifth Generation (Present and Beyond) Artificial IntelligenceFifth generation computing devices, based on artificial intelligence, are still in development, though there are some applications, such as voice recognition, that are being used today. The use of parallel processing and superconductors is helping to make artificial intelligence a reality. Quantum computation and molecular andnanotechnologywill radically change the face of computers in years to come. The goal of fifth-generation computing is to develop devices that respond to natural language input and are capable of learning and self-organization.


What are the characteristic of computer generations?

First Generation (1940-1956) Vacuum Tubes SponsoredProvide your business with the IT resources it needs::The IBM SmartCloud Simulator is an interactive tour that will show you several ways that you can use and manage this exciting product.The first computers used vacuum tubes for circuitry and magnetic drums for memory, and were often enormous, taking up entire rooms. They were very expensive to operate and in addition to using a great deal of electricity, generated a lot of heat, which was often the cause of malfunctions.First generation computers relied on machine language, the lowest-level programming language understood by computers, to perform operations, and they could only solve one problem at a time. Input was based on punched cards and paper tape, and output was displayed on printouts.The UNIVAC and ENIAC computers are examples of first-generation computing devices. The UNIVAC was the first commercial computer delivered to a business client, the U.S. Census Bureau in 1951. Second Generation (1956-1963) TransistorsTransistors replaced vacuum tubes and ushered in the second generation of computers. The transistor was invented in 1947 but did not see widespread use in computers until the late 1950s. The transistor was far superior to the vacuum tube, allowing computers to become smaller, faster, cheaper, more energy-efficient and more reliable than their first-generation predecessors. Though the transistor still generated a great deal of heat that subjected the computer to damage, it was a vast improvement over the vacuum tube. Second-generation computers still relied on punched cards for input and printouts for output.Second-generation computers moved from cryptic binary machine language to symbolic, or assembly, languages, which allowed programmers to specify instructions in words. High-level programming languages were also being developed at this time, such as early versions of COBOL and FORTRAN. These were also the first computers that stored their instructions in their memory, which moved from a magnetic drum to magnetic core technology.The first computers of this generation were developed for the atomic energy industry. Third Generation (1964-1971) Integrated CircuitsThe development of the integrated circuit was the hallmark of the third generation of computers. Transistors were miniaturized and placed on silicon chips, called semiconductors, which drastically increased the speed and efficiency of computers.Instead of punched cards and printouts, users interacted with third generation computers through keyboards and monitors and interfaced with an operating system, which allowed the device to run many different applications at one time with a central program that monitored the memory. Computers for the first time became accessible to a mass audience because they were smaller and cheaper than their predecessors. Fourth Generation (1971-Present) MicroprocessorsThe microprocessor brought the fourth generation of computers, as thousands of integrated circuits were built onto a single silicon chip. What in the first generation filled an entire room could now fit in the palm of the hand. The Intel 4004 chip, developed in 1971, located all the components of the computer-from the central processing unit and memory to input/output controls-on a single chip.In 1981 IBM introduced its first computer for the home user, and in 1984 Apple introduced the Macintosh. Microprocessors also moved out of the realm of desktop computers and into many areas of life as more and more everyday products began to use microprocessors.As these small computers became more powerful, they could be linked together to form networks, which eventually led to the development of the Internet. Fourth generation computers also saw the development of GUIs, the mouse and handheld devices. Fifth Generation (Present and Beyond) Artificial IntelligenceFifth generation computing devices, based on artificial intelligence, are still in development, though there are some applications, such as voice recognition, that are being used today. The use of parallel processing and superconductors is helping to make artificial intelligence a reality. Quantum computation and molecular and nanotechnology will radically change the face of computers in years to come. The goal of fifth-generation computing is to develop devices that respond to natural language input and are capable of learning and self-organization.


Five generation of the operating system?

First Generation (1940-1956) Vacuum Tubes SponsoredUse the IBM SmartCloud Simulator:: Get an interactive tour that shows you several ways you can use and manage IBM SmartCloud to provide your business the IT resources it needs.The first computers used vacuum tubes for circuitry and magnetic drums formemory, and were often enormous, taking up entire rooms. They were very expensive to operate and in addition to using a great deal of electricity, generated a lot of heat, which was often the cause of malfunctions.First generation computers relied on machine language, the lowest-level programming language understood by computers, to perform operations, and they could only solve one problem at a time. Input was based on punched cards and paper tape, and output was displayed on printouts.The UNIVAC and ENIAC computers are examples of first-generation computing devices. The UNIVAC was the first commercial computer delivered to a business client, the U.S. Census Bureau in 1951. Second Generation (1956-1963) Transistors Transistors replaced vacuum tubes and ushered in the second generation of computers. The transistor was invented in 1947 but did not see widespread use in computers until the late 1950s. The transistor was far superior to the vacuum tube, allowing computers to become smaller, faster, cheaper, more energy-efficient and more reliable than their first-generation predecessors. Though the transistor still generated a great deal of heat that subjected the computer to damage, it was a vast improvement over the vacuum tube. Second-generation computers still relied on punched cards for input and printouts for output.Second-generation computers moved from cryptic binary machine language to symbolic, or assembly, languages, which allowed programmers to specify instructions in words. High-level programming languages were also being developed at this time, such as early versions of COBOL and FORTRAN. These were also the first computers that stored their instructions in their memory, which moved from a magnetic drum to magnetic core technology.The first computers of this generation were developed for the atomic energy industry. Third Generation (1964-1971) Integrated Circuits The development of the integrated circuit was the hallmark of the third generation of computers. Transistors were miniaturized and placed on silicon chips, called semiconductors, which drastically increased the speed and efficiency of computers.Instead of punched cards and printouts, users interacted with third generation computers through keyboards and monitorsand interfaced with an operating system, which allowed the device to run many different applications at one time with a central program that monitored the memory. Computers for the first time became accessible to a mass audience because they were smaller and cheaper than their predecessors. Fourth Generation (1971-Present) Microprocessors The microprocessor brought the fourth generation of computers, as thousands of integrated circuits were built onto a single silicon chip. What in the first generation filled an entire room could now fit in the palm of the hand. The Intel 4004 chip, developed in 1971, located all the components of the computer-from the central processing unit and memory to input/output controls-on a single chip.In 1981 IBM introduced its first computer for the home user, and in 1984 Apple introduced the Macintosh. Microprocessors also moved out of the realm of desktop computers and into many areas of life as more and more everyday products began to use microprocessors.As these small computers became more powerful, they could be linked together to form networks, which eventually led to the development of the Internet. Fourth generation computers also saw the development of GUIs, the mouse and handhelddevices. Fifth Generation (Present and Beyond) Artificial Intelligence Fifth generation computing devices, based on artificial intelligence, are still in development, though there are some applications, such as voice recognition, that are being used today. The use of parallel processing and superconductors is helping to make artificial intelligence a reality. Quantum computation and molecular and nanotechnology will radically change the face of computers in years to come. The goal of fifth-generation computing is to develop devices that respond to natural language input and are capable of learning and self-organization.Read more: What_are_the_five_generations_of_operating_systems_in_history


How many generations of computers do you have and what are their distinguishing features?

four generations are over and the fifth is on the way ......First Generation (1940-1956) Vacuum TubesSecond Generation (1956-1963) TransistorsThird Generation (1964-1971) Integrated CircuitsFourth Generation (1971-Present) MicroprocessorsFifth Generation (Present and Beyond) Artificial Intelligence

Related questions

Why do computers change in each generation?

growth of technology easy to maintaine


Can you change a graphics card in a MacBook Pro 2.16ghz processer laptop?

There is no graphics card to change as the graphic chips are built into the motherboard. This is common with most makes of laptop computers.


How can i make the graphics of Age of Empires three better if you know what mean?

Go to options then change the graphics settings. If your computer cant cope with it, change it back or buy a better video/graphics card


How would I go about changing the graphics card in my computer?

This is fairly straightforward if you have a desktop. First, you need to do research on your computer's motherboard and find what type of graphics card it can support. Most newer computers can take a PCI-e x16 graphics card, but older computers, circa 2002 are based on the AGP architecture. These two are not compatible, so you must first check that your computer supports the type of graphics card you wish to buy. After purchasing the correct graphics card, you must turn off your computer, make sure you're fully grounded, and open up the case. Depending on the way your computer is structured inside, you may need to remove other components first before you can remove your old graphics card. Remove the graphics card by gently tugging on its sides, prying it slowly from the socket. Place your new card in the same socket as the old one and return your computer to its original form. When you start up your computer again, your operating system should be able to detect the change in hardware automatically, and either


How do you change computer is to a plural noun?

The plural of computer is computersand the plural of is is are, e.g. the computer is expensive: the computers are expensive.


Is there a computer program that you can download to reduce the graphics of computer games?

All games have options inside the game to change the graphics up or down. If you reduce the graphics in-game all the way down and the game is still unplayable then you probably need to clean up your computer and upgrade its components.


What is the definition of computer graphics?

Silicon Graphics, Inc. (SGI, historically sometimes referred to as Silicon Graphics Computer Systemsor SGCS) is a company manufacturing high-performance computing solutions, including computer hardware and software. SGI was founded by Jim Clark and Abbey Silverstone in 1982, initially as a maker of 3D graphics display terminals.


Can you change the Graphics Card for your Acer Extensa 5620-4020 or is it built into the motherboard?

Afraid to say, with this being a notebook, all the graphics cards are inbuilt on the board. Hope this helps be safe nige cadishead computers


What do you have to change in the computer to change the manual to automatic transmission?

Yes u MUST change the computer if you are changing the transmission from auto to manual (visa versa). The computers are different for the especially where the trannirs are concerned.


Classification of computer according to generation?

First Generation (1940-1956) Vacuum Tubes SponsoredIs your network ready for the cloud? Find out : read "Five Reasons Classic Ethernet Switches Won't Support the Cloud" and learn how to examine your network's strength and eliminate any weak points.The first computers used vacuum tubes for circuitry and magnetic drums formemory, and were often enormous, taking up entire rooms. They were very expensive to operate and in addition to using a great deal of electricity, generated a lot of heat, which was often the cause of malfunctions.First generation computers relied on machine language, the lowest-level programming language understood by computers, to perform operations, and they could only solve one problem at a time. Input was based on punched cards and paper tape, and output was displayed on printouts.The UNIVAC and ENIAC computers are examples of first-generation computing devices. The UNIVAC was the first commercial computer delivered to a business client, the U.S. Census Bureau in 1951. Second Generation (1956-1963) TransistorsTransistors replaced vacuum tubes and ushered in the second generation of computers. The transistor was invented in 1947 but did not see widespread use in computers until the late 1950s. The transistor was far superior to the vacuum tube, allowing computers to become smaller, faster, cheaper, more energy-efficient and more reliable than their first-generation predecessors. Though the transistor still generated a great deal of heat that subjected the computer to damage, it was a vast improvement over the vacuum tube. Second-generation computers still relied on punched cards for input and printouts for output.Second-generation computers moved from cryptic binary machine language to symbolic, or assembly, languages, which allowed programmers to specify instructions in words. High-level programming languages were also being developed at this time, such as early versions of COBOL and FORTRAN. These were also the first computers that stored their instructions in their memory, which moved from a magnetic drum to magnetic core technology.The first computers of this generation were developed for the atomic energy industry. Third Generation (1964-1971) Integrated CircuitsThe development of the integrated circuit was the hallmark of the third generation of computers. Transistors were miniaturized and placed on silicon chips, called semiconductors, which drastically increased the speed and efficiency of computers.Instead of punched cards and printouts, users interacted with third generation computers through keyboards and monitorsand interfaced with an operating system, which allowed the device to run many different applications at one time with a central program that monitored the memory. Computers for the first time became accessible to a mass audience because they were smaller and cheaper than their predecessors. Fourth Generation (1971-Present) MicroprocessorsThe microprocessor brought the fourth generation of computers, as thousands of integrated circuits were built onto a single silicon chip. What in the first generation filled an entire room could now fit in the palm of the hand. The Intel 4004 chip, developed in 1971, located all the components of the computer-from the central processing unit and memory to input/output controls-on a single chip.In 1981 IBM introduced its first computer for the home user, and in 1984 Apple introduced the Macintosh. Microprocessors also moved out of the realm of desktop computers and into many areas of life as more and more everyday products began to use microprocessors.As these small computers became more powerful, they could be linked together to form networks, which eventually led to the development of the Internet. Fourth generation computers also saw the development of GUIs, the mouse and handhelddevices. Fifth Generation (Present and Beyond) Artificial IntelligenceFifth generation computing devices, based on artificial intelligence, are still in development, though there are some applications, such as voice recognition, that are being used today. The use of parallel processing and superconductors is helping to make artificial intelligence a reality. Quantum computation and molecular and nanotechnology will radically change the face of computers in years to come. The goal of fifth-generation computing is to develop devices that respond to natural language input and are capable of learning and self-organization.


How did the computer use change during the 1990?

Computers became common in homes.


How did Marcian Hoff's infention change computers?

Marcian Hoff was one of the computer scientists who developed the microprocessor in the early 1970s. Having a 'universal processor' was an important development in computer science.