answersLogoWhite

0


Want this question answered?

Be notified when an answer is posted

Add your answer:

Earn +20 pts
Q: How is excitatory postsynaptic potential produce?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Related questions

How long does an excitatory postsynaptic potential lasts?

About 15 milliseconds


What is the difference between EPSP and an IPSP?

An EPSP is an excitatory postsynaptic potential, which represent input coming from excitatory cells, whereas an inhibitory postsynaptic potential represents input driven by inhibitory presynaptic cells.


What type of membrane potential is generated at the synapse on the postsynaptic membrane?

It can be an excitatory postsynaptic potential (EPSP) or an inhibitory postsynaptic potential (IPSP), depending on the synapse. The EPSP depolarizes the membrane, while the IPSP hyperpolarizes it.


Which membrane potential results in depolarization without a nerve impulse being generated?

excitatory postsynaptic potential


Which membrane potential results in depolorization without a nerve impulse being generated?

excitatory postsynaptic potential


What are epsp?

EPSP is an abbreviation for excitatory postsynaptic potential. This is a graded depolarization of a postynaptic membrane responding to neurotransmitter stimulation.


Which membrane potential occurs because of the influx of Na plus through chemically gated channels in the receptive region of a neuron?

An excitatory postsynaptic potential, a type of graded potential, occurs because of the influx of Na+ through chemically gated channels in the receptive region, or postsynaptic membrane, of a neuron. Graded potentials are generated by chemically gated channels, whereas action potentials are produced by voltage-gated channels.


What determines if an action potential is initiated in the postsynaptic neuron?

Every time neurotransmitter is released from the presynaptic neuron it generates an excitatory post synaptic potential(EPSP) in the postsynaptic neuron. When the EPSP is greater than the threshold for excitation an action potential is generated.


If a neurotransmitter depolarizes the postsynaptic membrane it is referred to as?

Excitatory


What happens when neurotransmitters communicate an excitatory message to the postsynaptic neuron?

When neurotransmitters communicate an inhibitory message to the postsynaptic neuron:


What will occur when an excitatory postsynaptic potential EPSP is being generated on the dendritic membrane?

A single type of channel will open, permitting simultaneous flow of sodium and potassium.


What is the difference between an excitatory synapse and an inhibitory synapse?

Synapses are junctions that allow a neuron to electrically or chemically transmit a signal to another cell. Synapses can either be excitatory or inhibitory. Inhibitory synapses decrease the likelihood of the firing action potential of a cell while excitatory synapses increase its likelihood. Excitatory synapses cause a positive action potential in neurons and cells. For example, in the neurotransmitter Acetylcholine (Ach), its binding to receptors opens up sodium channels and allows an influx of Na+ ions and reduces membrane potential which is referred to as Excitatory Postsynaptic potential(EPSP). An action potential is generated when the polarization of the postsynaptic membrane reaches threshold. ACh acts on nicotinic receptors which can be found at the neuromuscular junction of skeletal muscles, the parasympathetic nervous system, and the brain. It also acts on muscarinic receptors found at neuromuscular junctions of the smooth muscles, glands, and the sympathetic nervous system. Inhibitory synapses, on the other hand, cause the neurotransmitters in the postsynaptic membrane to depolarize. An example is the neurotransmitter Gamma Aminobutyric Acid (GABA). The binding of GABA to receptors increases the flow of chloride (CI-) ions in the postsynaptic cells raising its membrane potential and inhibiting it. The binding of GABA to receptors activates a second messenger opening potassium channels.