4
12
3
two nand gates
A 2 input NAND gate requires 4 NOR gates.A 3 input NAND gate requires 5 NOR gates.A 4 input NAND gate requires 6 NOR gates.etc.
many inputs one outputs
NOR gate = not(A or B) = A nor BAND gate = A and BAND gate = not(not A or not B)AND gate = not(not(A or A) or not(B or B))AND gate = (A nor A) nor (B nor B)Therefore using 2 input NORs to make a 2 input AND you need three NORs. If you wanted something different (e.g. a 5 input AND) the above proof can be modified appropriately to get your answer.
As such an OR gate should do the job...but if the question is of using gates other than the simple OR, it should be a combo of NOR and NOT gates; where-in, the NOT gate comes after the NOR gate. Factfully speaking: The output of a NOR gate when fed to a NOT gate shall give you an OR gate. cheers :) Anish Murthy Airpula, RF Design Engineer (F.A.E) Ceramic & Microwave Products Group, Dover Corporation Inc, United States of America
There are 2 types of universal gates in physics: the NAND gate (combinations of NAND gates can produce any logic function) and the NOR gate (combinations of NOR gates can also produce any logic function). These gates are considered universal because they can be used to implement any logical function.
for a two input gate to represent as an n-input gate excatly n-1 two input gates are required. this implies that for a two input OR gate to represent a four input OR gate exactly three two input OR gates are required let F is =a+b+c+d =(((a+b)+c)+d) =((a+b)+(c+d)) in both the above cases + is used three times so three two input OR gates make a four input OR gates. This discussion doesnot hold good for NAND gates an example can illlustrate the reson:- take F=(a.b.c.d)'=a'+b'+c'+d' --------------------------->(1) (this is obtained by a four input NAND gate) let us take this in the manner we did it for an OR gate and we will then verify the result. =((a.b)'(c.d)')' =((a'+b').(c'+d'))' =(a'+b')'+(c'+d')' =ab+cd <------------------------(2) (1)is not equal to (2) so we can say that a NAND gate cannot be replaced in the manner as OR gate is replaced
Four.
THE MAIN ADVANTAGE OF THE UNIVERSAL LOGIC GATES IS THAT IT CAN BE USED TO MADE ANT KIND OF LOGIC GATE .......BY USING IT . NAND AND NOR ARE CALLED AS UNIVERSAL GATES ARE USED TO MAKE ANY GAATES AS OR ,AND, XNOR,NOT. logic gates are used in many everyday electronic devices such as tv's, computers and telephones.
by multiplying two NAND gates