4.18 joules over grams n temp
Use the equation q=mc(delta t) (that is, heat equals mass times specific heat times the change in temperature) to answer the question. The specific heat of water is 4.186 Joules per gram-Celsius. Therefore, q=(40)(4.186)(20), which equals 3348.8 Joules of heat (or approximately 3.35 kiloJoules of heat).
Thermal capacity is equals to the product of the mass of the body and its specific gravity. Thus, specific heat is equals to the thermal capacity divided by the mass of the body. Now, if the mass of tue body be unity then specific heat will be equals to the thermal capacity of the body. So, thermal capacity of unit mass of a substance is equals to its specific heat
Water has much higher specific heat than lead. All metals have fairly low specific heat values.
The specific heat value for water is 4.18 J/goC.
The specific heat of water is high. An example of an object with low specific heat would be a metal pan. Since specific heat is the energy needed to raise 1g of something 1 degree Celsius, water would have a high specific heat.
Specific heat of water is 1 calory per gram .
No, the specific heat of coconut water is typically lower than that of regular water. Coconut water has a specific heat capacity of around 3.91 J/g°C, while water has a specific heat capacity of around 4.18 J/g°C.
That is how specific heat is defined. When you measure something you have to measure it relative to some point of reference. In specific heat it was agreed upon that water was to be the standard and its specific heat would be one. Therefore everything else is measured relative to water.
The specific heat of water at 20 0C and 100 kPa is 4,1818 J/gK.
no, specific heat will always be 4.16
the specific heat capacity of water is 4200 J / kg °C
The amount of heat energy transferred to hot water depends on various factors such as the initial and final temperatures of the water, the mass of the water, and the specific heat capacity of water. The formula to calculate heat energy transferred is: Q = mcΔT, where Q is the heat energy, m is the mass of the water, c is the specific heat capacity of water, and ΔT is the change in temperature.