Incepted in the year 2014, we “Technical Products” have been able to carve a niche for ourselves by offering a quality range of high-speed data loggers Memory HiCorder, 6KV Surge Simulator SUG61005TB, Oscilloscopic Memory HiCorder, Humidity Logger, Clamp-On Power Logger, Clamp-On Current Tester, Earth Tester, Benchtop Digital Multimeter, Dc Signal Source (calibrator)
Measurement of electrical conductivity by knowing the impedance value.
At resonance, the L and C impedance cancels out, so the current can be calculated based on the resistance and applied voltage. Imagine increasing frequency of the supply from 0 Hz to very high. At low frequency, the impedance of the inductor is ~0 (defined as Zl = w*L*j), and the impedance of the capacitor is very large (defined as Zc = 1 / (w*C*j)). As you increase the frequency, the impedance of the capacitor will decrease, as the impedance of the inductor increases. At some point (the resonant frequency), these two will be equal, with opposite signs. After crossing the resonant frequency, the inductor impedance will continue growing larger than the capacitor impedance until the total impedance approaches infinite.
Measure the impedance with a gain-phase analyzer if you have access to one.
An inductor has impedance at high frequencies because its reactance, which is a measure of how much it resists changes in current, increases with frequency. This reactance is given by the formula (X_L = 2\pi f L), where (f) is the frequency and (L) is the inductance. As the frequency increases, the inductor opposes rapid changes in current more effectively, resulting in higher impedance. This behavior makes inductors useful in filtering applications, where they can block high-frequency signals while allowing lower frequencies to pass.
A common base NPN amplifier is used for high frequency applications as the base minimize oscillations at high frequency, separates the input and output. In a common base NPN amplifier the voltage gain is high, relatively low input impedance and high output impedance compared to the common collector.
At low frequencies, the input impedance of a circuit is primarily influenced by capacitive elements, as they can block DC and affect the impedance seen by the input. Conversely, at high frequencies, inductive elements dominate the input impedance, as they can create high reactance and affect the circuit's performance. The interaction between these elements determines the overall frequency response, with capacitors impacting low-end behavior and inductors influencing high-end behavior.
Properties of an op-amp are as follows: 1.Very high open loop gain which remains constant over the frequency range in which the device is to be used. 2.Very high input impedance to minimize the current drawn by the circuit with little losses. 3.Very low output impedance 4. They are stable, i.e. not liable to burst into parasitic oscillation. 5. They are free from drift caused by ambient temperature changes.
The input impedance should increase slightly for the lower frequency, when using a capacitive circuit.
The impedance of a component (inductor or capacitor) will change with frequency - resistor impedances will not. Inductor impedance - j*w*L Capacitor impedance - 1/(j*w*C) L = inductance, C = capacitance, j = i = imaginary number, w = frequency in radians The actual inductance and capacitance does not change with frequency, only the impedance.
An LC parallel resonance circuit exhibits maximum impedance because at the resonance frequency, the inductive and capacitive reactances cancel each other out. This occurs when the frequency of the input signal matches the natural frequency of the circuit, leading to a condition where the total impedance is dominated by the resistive components. As a result, the circuit presents a high impedance to the source, minimizing current flow. This characteristic is fundamental in applications such as tuning and filtering in electronic circuits.
A: As cable lenght increases the impedance changes with frequency especially at half wave lenght where at some frequency the impedance can be zero. The impedance is a function of capacitance inductance and resistance in the cable
It is beacause of the capacitor's impedance which is 1/jwc where w=2*PI*f where f=frequency. If frequency = zero then the impedance =1/0 which equals infinate impedance and therefore an open.