When radium-226 undergoes alpha decay, it becomes radon-222. We write the equation like this: 88226Ra => 24He + 86222Rn Here we see the alpha particle written as a helium-4 nucleus, which is, in point of fact, what it is. Notice that the numbers that are subscripted are equal on both sides of the equation, and the superscripted numbers are as well. They must balance for your equation to be correct.
The balanced nuclear equation for the alpha decay of thorium-230 is: ^230Th → ^226Ra + ^4He
The balanced nuclear reaction associated with Bi-213 decaying into Tl-209 involves the emission of an alpha particle (helium-4 nucleus) and results in the daughter nucleus Th-209. The balanced nuclear reaction is: Bi-213 -> Tl-209 + He-4.
Po-216- -----------------> Pb-212
If radon-210 undergoes alpha decay, it will produce the alpha particle (which is a helium-4 nucleus) and polonium-206. The equation looks like this: 86210Ra => 24He + 84206Po You'll note that in the balanced nuclear equation, the atomic numbers, which are the subscripts, balance on both sides of the equation (86 = 2 + 84). The atomic masses, which are the superscripts, also balance on both sides of the equation (210 = 4 + 206).
Boron-10 (^10B) undergoing neutron capture forms boron-11 (^11B), followed by the emission of an alpha particle (helium-4 atom). The balanced nuclear equation would be: ^10B + n → ^11B + ^4He
In nuclear decay equations, reactants are the original unstable nucleus undergoing decay, while products are the resulting stable or daughter nucleus and any emitted particles such as alpha particles, beta particles, or gamma rays. The reactants are on the left side of the equation, and the products are on the right side.
To write nuclear decay equations, you would typically start with the parent nucleus and identify the type of decay (alpha, beta, gamma). Then, you would balance the equation by conserving mass number and atomic number on both sides of the equation. Finally, you write the decay products. Remember to include the correct particles emitted during the decay process.
This is alpha radiation (alpha particles).
All of them - alpha - beta - neutron - visible light - are examples of nuclear radiation.
Alpha nuclear decay
In alpha decay, the nucleus emits an alpha particle (helium nucleus) consisting of 2 protons and 2 neutrons. Thallium-230 undergoes alpha decay to produce an alpha particle (helium-4 nucleus) and become lead-226. The balanced nuclear equation for this process is: ([^{230}{81}Tl \rightarrow ^{4}{2}He + ^{226}_{82}Pb]).
nuclear decay, such as alpha decay or beta decay.