GAAGGCCUAGCUCCUUUCCGGUCA
G binds to C and A binds to U. Remember that in RNA, uracil replaces thymine.
The sense strand of DNA is the strand that has the same sequence as the mRNA that is transcribed from DNA. The antisense strand is the complementary strand of the sense strand, which is used as a template for mRNA synthesis. The mRNA is transcribed from the antisense strand and contains the same sequence as the sense strand.
One mRNA strand is made.
DNA is not made into mRNA, it is transcribed by mRNA. The DNA molecule is split into two strands by the enzyme helicase. One strand is the sense strand and the other is the anti-sense strand. Then mRNA nucleotides pair with their complimentary DNA bases on the antisense strand. The enzyme RNA polymerase causes the mRNA nucleotides to bond with one another, forming a strand of mRNA.
mRNA is complementary to the template strand of DNA during transcription. The template strand serves as a template for mRNA synthesis, directing the formation of a complementary mRNA transcript.
The DNA strand that is copied to make mRNA is the template strand of the gene. This strand serves as a template for the RNA polymerase enzyme to synthesize a complementary mRNA strand during the process of transcription.
In the process of transcription, the template strand of DNA (often referred to as the antisense or non-coding strand) is used to produce messenger RNA (mRNA). This strand serves as the guide for RNA polymerase to synthesize the mRNA complementary to it. The other strand, known as the coding or sense strand, has a sequence that matches the mRNA (with uracil replacing thymine). Therefore, if strand A is the template, then mRNA is produced based on strand A.
The strand running in the 3'-5' end will be the one that RNA copies, as this is the direction of transcription
The strand of DNA that is not transcribed is called the coding strand. This strand serves as the template for mRNA synthesis during transcription. The opposite strand, which is transcribed into mRNA, is known as the template strand.
The template strand is used as a guide to create mRNA during transcription. The mRNA is complementary to the template strand and carries the genetic information from the DNA to the ribosome for protein synthesis.
A strand of DNA
A strand of DNA
The mRNA sequence generated from the DNA strand tgacgca would be acugcgu. This is because mRNA is complementary to the DNA template strand, so DNA base T pairs with mRNA base A, DNA base G pairs with mRNA base C, DNA base A pairs with mRNA base U, and DNA base C pairs with mRNA base G.