answersLogoWhite

0

lower energy level

User Avatar

Wiki User

13y ago

What else can I help you with?

Related Questions

Can you explain why an electron's energy increases when it absorbs a photon and also describe what happens to the photon in this process?

When an electron absorbs a photon, its energy increases because the photon transfers its energy to the electron. The photon ceases to exist as a discrete particle and its energy is absorbed by the electron, causing it to move to a higher energy level.


When an electron drops to a lower energy level what is the energy of a photon released?

The energy of the photon is the same as the energy lost by the electron


How does an electron must move in order to release a photon of light?

An electron must move from a higher energy level to a lower energy level within an atom in order to release a photon of light. This process, known as electron transition, results in the emission of light energy in the form of a photon.


What does an electron do when a photon is released by an atom?

When an electron releases a photon, it moves to a lower energy level within the atom. This process is known as an electron transition. The released photon carries the energy difference between the initial and final energy levels of the electron.


If you make the electron jump downward then return it to the outer ring what do you notice about the photon released or absorbed?

When an electron jumps downward to a lower energy state in an atom, it releases energy in the form of a photon which is emitted. When the electron returns to the outer ring, it absorbs energy in the form of a photon. The energy of the photon absorbed is equal to the energy of the photon released during the downward jump.


Can free electron absorb photon?

Yes, free electrons can absorb photons. When a photon interacts with a free electron, it can transfer its energy to the electron, causing it to move to a higher energy level or even be ejected from the material. This process is the basis for various phenomena such as photoelectric effect and Compton scattering.


What happens when an electron returns to its ground state from it's excited state?

A photon will be released!


If an electron is in an excited state it must lose energy when it falls to a lower state. What happens to the energy that is lost?

The energy that is lost when an electron falls to a lower state is emitted as a photon of light. This process is known as photon emission, and the energy of the emitted photon corresponds to the energy difference between the initial and final states of the electron.


When an electron drops to a lower energy level what is the energy of the photon released?

The energy of the photon is the same as the energy lost by the electron


How can a photon be destroyed or created?

A photon can be created when an electron transitions to a lower energy level and emits a photon. Conversely, a photon can be absorbed and "destroyed" when it is absorbed by an electron, causing the electron to transition to a higher energy level.


What is the amount of energy released by an electron as it returned to ground state?

The energy released by an electron as it returns to the ground state is equal to the difference in energy between its initial excited state and the ground state. This energy is typically released in the form of a photon with a specific wavelength determined by the energy difference.


What has to happen before you can move to a new energy level in the electron cloud?

An electron must absorb or release a specific amount of energy, typically in the form of a photon, to move to a new energy level in the electron cloud. This process is known as electron excitation or de-excitation.