answersLogoWhite
notificationBell

Top Answer
User Avatar
Wiki User
Answered 2014-03-29 11:12:19

Electron affinity of an element is defined as the energy released by adding an electron to a gaseous atom of the element. With the electronic configuration of the fluroine atom being [Ne] 2s2 2p5, it needs just one more electron to form the fluoride ion (F-) which has the noble gas structure and is much more stable.

001
๐Ÿ™
0
๐Ÿคจ
0
๐Ÿ˜ฎ
0
๐Ÿ˜‚
0
User Avatar

Your Answer

Related Questions


Fluorine has higher electron affinity than any other element.


The halogen with the least negative electron affinity is Fluorine. Fluorine has the highest electron affinity of any element and is also the most electronegative.


Fluorine has greater electron affinity than bromine, or any other element.


Fluorine does not have the highest electron affinity it has highest electronegativity the highest electron affinity is for chlorine atom.


Yes. It's true. Chlorine has the highest electron affinity, then Fluorine, Bromine and Iodine



electron affinity is the negative of electron gain enthalpy. for example, the electron gain enthalpy of fluorine is -328, and electron affinity is 328 which is -(-328)


No. The most reactive non metal, fluorine, has the highest electron affinity.



Yes. Oxygen has greater electron affinity than any other element except fluorine.


Generally electron affinity goes up as you go from left to right across the periodic table, and decreases as you go down a column. However, fluorine is an exception -- and the element with the highest electron affinity is chlorine.(Note that the most electronegative element is fluorine however; 'electronegativity' is not exactly the same as 'electron affinity'.)Electronegativity is the ability of an atom in a molecule to draw bonding electrons to itselfElectron affinity is a measure of the energy change when an electron is added to a neutral atom to form a negative ion.The reason that the electron affinity is not as high as might otherwise be predicted for fluorine, is that it is an extremely small atom, and so it's electron density is very high. Adding an additional electron is therefore not quite as favorable as for an element like chlorine where the electron density is slightly lower (due to electron-electron repulsion between the added electron and the other electrons in the electron cloud).


Generally electron affinity goes up as you go from left to right across the periodic table, and decreases as you go down a column. However, fluorine is an exception -- and the element with the highest electron affinity is chlorine.(Note that the most electronegative element is fluorine however; 'electronegativity' is not exactly the same as 'electron affinity'.)Electronegativity is the ability of an atom in a molecule to draw bonding electrons to itselfElectron affinity is a measure of the energy change when an electron is added to a neutral atom to form a negative ion.The reason that the electron affinity is not as high as might otherwise be predicted for fluorine, is that it is an extremely small atom, and so it's electron density is very high. Adding an additional electron is therefore not quite as favorable as for an element like chlorine where the electron density is slightly lower (due to electron-electron repulsion between the added electron and the other electrons in the electron cloud).


The halogen with the least-negative electron affinity is astatine. Electron affinity and electronegativities decreases down a group. Since astatine is the last halogen located in Group 17 as you move down the column from fluorine, it has the least negative electron affinity.


No, it is not. Electron affinity follows a trend like electronegativity and hence increases as we move from left to right across a period. So, Fluorine has the highest electron affinity among 1st period elements.


Down the group electron affinity decreases Across a period electron affinity increases. However, it should be noted that chlorine is having higher electron affinity than flourine due to the small size of fluorine atom)


Generally electron affinity goes up as you go from left to right across the periodic table, and decreases as you go down a column. However, fluorine is an exception -- and the element with the highest electron affinity is chlorine (note that the most electronegative element is fluorine however).The reason that the electron affinity is not as high as might otherwise be predicted for fluorine is that it is an extremely small atom, and so it's electron density is very high. Adding an additional electron is therefore not quite as favorable as for an element like chlorine where the electron density is slightly lower (due to electron-electron repulsion between the added electron and the other electrons in the electron cloud).Note that there are a number of other exceptions to the general rule of electron affinity increasing towards the upper right corner -- see the Related Questions links to the left for an explanation of some of those other exceptions.See also the Web Links to the left for more information about electron affinities and the fluorine-chlorine exception.


No, nitrogen does not have a low electron affinity. Electron affinity increases as you go up and to the right on the periodic table. Thus, Groups I and II elements (ex. Cs, Ba, Sr, etc.) have LOW electron affinities and the halogens in Group VII (Br, Cl, F, etc) have the HIGHEST electron affinities. Chlorine has the HIGHEST electron affinity on the periodic table.(Fluorine is an exception in this case.)


Helium has no electron affinity.


Electron affinity is the amount of energy released when a neutral atom accepts an electron. Halogens have the highest electron affinity with chlorine having max. electron affinity.


The atomic size of fluorine is very small. So addition of one more electron to the electrons already present in the fluorine atom will make it unstable due to repulsion between the electrons. Hence the electron affinity of fluorine is smaller than that of chlorine.


chlorine has the highest electron affinity


AnswerElectron affinity is the energy released when we add an electron to the outermost orbit of the atom. Halogens are the higher in electron affinity, and chlorine has the higher electron affinity than rest of the halogens. The irregularity in the electron affinity trend between Cl and F is due to the small size of the F atom. Although F definitely has a higher attraction for an electron than Cl (as evidenced by its high electro negativity value), the small size of the F atom means that adding an electron creates significant repulsion. Since electron affinity is an energy measurement, the total energy associated with electron affinity winds up being the energy that is released by the electron binding to the nucleus, minus the energy involved in overcoming the electrical repulsion in the outer shell.This makes the fluoride anion so formed unstable due to a very high charge/mass ratio. Also, fluorine has no d electrons which limits its atomic size. As a result, fluorine has an electron affinity less than that of chlorine.


Nonmetals have high electron affinity, in general, while metals have low electron affinity.



Bromine has a higher electron affinity.