answersLogoWhite

0


Best Answer

where else it would go through.....

the current entering the first resistor must pass through the next preceding resistors in order to reach the positive/+ve potential so as to complete the circuit.

Current flow is the actual flow of electrons so it goes from the ground (negative most point) to th emost positive point. lectrons are a negatve charged unit so they travel towards the positive point.

User Avatar

Wiki User

14y ago
This answer is:
User Avatar
More answers
User Avatar

Wiki User

9y ago

We have three physical quantities related to each other in this case of ohm's law

i.e. V = I * R

Now we have different resistance values connected in series.

Logically speaking if V is constant then I must have changed according to various values of R

If we connect them in parallel then same potential difference V is confirmed. So current has to change inversely.

This means as R is more then less current through and if R is less more current. This is true in case V is constant

Same way if resistors are connected in series then voltage cannot remain constant. So the only possibility is that current has to remain the same. Moreover there is only one way for the current to pass through. So it cannot be possible to have different current as different segments of the same track.

Hence same current.

Another Answer

There is only one route through a series circuit, so the current passing through the first resistor must also pass through the second and the third, and so on. In other words, it's the same current wherever it is measured.

This answer is:
User Avatar

User Avatar

Wiki User

12y ago

The current is the same in a series circuit because the electron flows continuously ion a closed loop hence the same intensity across all the elements in that closed path(loop).

This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: Why the current is equal in each resistor of a series circuit?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Engineering

How do resistance behave in parallel circuit?

in a parallel circuit resistance decreases increasing the current.


Does Kirchhoff current law and Kirchhoff voltage law depend on the relationship between current and voltage in a resistor?

Kirchhoff's Voltage and Current Laws apply to circuits: series, parallel, series-parallel, and complex.If your circuit comprises just a single resistor, then they still apply. For example, the voltage drop across a single resistor will be equal and opposite the applied voltage (Kirchhoff's Voltage Law), and the current entering the resistor will be equal to the current leaving it (Kirchhoff's Current Law).


What is the impedance of a series circuit containing a resistor of 100 ohms and an inductor with an Xl equal to 80 ohms?

a bowl of cereal


When resistors are connected in series in a circuit. what are the relationships between the voltage drops across the resistor and the currents through the resistors?

When resistors are connected in series in a circuit . the voltage drop across each resistor will be equal to its resistance, as V=IR, V is direct proportional to R. An A: The relationship is that the current will divide for each paths in a parallel circuit and the voltage drop across each will be the source voltage. In a series circuit the current will remain the same for each component but the voltage will divide to reflect each different component value. And the sum of all of the voltage drops will add to the voltage source


What happens if a circuit has no resistance?

Then the voltage in will equal the voltage out. The purpose of a resistor is to reduce the amount of electrical flow of current. You 'short out' the supply and blow a fuse/circuit breaker.

Related questions

What is the strength of current in each resistor of a series circuit?

The current in each resistor in a series circuit is the same. Kirchoff's Current Law states that the sum of the currents entering a node must add up to zero. The connection between two resistors in a series circuit is a node. The current entering the node from one resistor is equal to the current leaving the node into the next resistor.


How do resistance behave in parallel circuit?

in a parallel circuit resistance decreases increasing the current.


How does voltage and resistance behave in a series and a parallel circuit?

The current through each resistor is equal to the voltage across it divided by its resistance for series and parallel circuits.


If the resistance in the circuit is increased what will happen to the current and voltage?

* resistance increases voltage. Adding more resistance to a circuit will alter the circuit pathway(s) and that change will force a change in voltage, current or both. Adding resistance will affect circuit voltage and current differently depending on whether that resistance is added in series or parallel. (In the question asked, it was not specified.) For a series circuit with one or more resistors, adding resistance in series will reduce total current and will reduce the voltage drop across each existing resistor. (Less current through a resistor means less voltage drop across it.) Total voltage in the circuit will remain the same. (The rule being that the total applied voltage is said to be dropped or felt across the circuit as a whole.) And the sum of the voltage drops in a series circuit is equal to the applied voltage, of course. If resistance is added in parallel to a circuit with one existing circuit resistor, total current in the circuit will increase, and the voltage across the added resistor will be the same as it for the one existing resistor and will be equal to the applied voltage. (The rule being that if only one resistor is in a circuit, hooking another resistor in parallel will have no effect on the voltage drop across or current flow through that single original resistor.) Hooking another resistor across one resistor in a series circuit that has two or more existing resistors will result in an increase in total current in the circuit, an increase in the voltage drop across the other resistors in the circuit, and a decrease in the voltage drop across the resistor across which the newly added resistor has been connected. The newly added resistor will, of course, have the same voltage drop as the resistor across which it is connected.


Does Kirchhoff current law and Kirchhoff voltage law depend on the relationship between current and voltage in a resistor?

Kirchhoff's Voltage and Current Laws apply to circuits: series, parallel, series-parallel, and complex.If your circuit comprises just a single resistor, then they still apply. For example, the voltage drop across a single resistor will be equal and opposite the applied voltage (Kirchhoff's Voltage Law), and the current entering the resistor will be equal to the current leaving it (Kirchhoff's Current Law).


Consider two identical resistors wired in series one behind the other If there is an electric current through the combination the current in the second resistor is?

Two resistors wired in series (no mater if they have the same resistor value or not) will always have the same amount of current flowing through them. Therefore, the current flowing through the second resistor will be equal to the current flowing through the first one. The current through every component in a series circuit is the same. The voltage across every component in a parallel circuit is the same.


Is resistance in a series circuit equal to the largest resistor in the series?

No. The resistance in a series circuit is all the resistor values added together. eg. If two resistors were in a circuit, one was 10 ohms and the other was 30 ohms, the resistance in the circuit would be 30 ohms. Hope this helps!


Is the heat loss and current of a resistor affected by being in a parallel circuit or can you just calculate it the same as in series?

The heat generated by any particular resistor depends (at least electrically) solely on the power it dissipates. Power dissipation in a resistor is equal to current squared times resistance, and the current through the resistor is equal to the voltage across it divided by the resistance. If we take a 10 ohm resistor ('your resistor') and put it in a series circuit such that there is 10 volts across your resistor, the current through it will be 1 ampere (10/10=1). the power dissipated will be 10 watts (1^2 * 10=10). If we put your resistor in a parallel circuit that also puts 10 volts across it, then the current and power will be the same. Your resistor does not know or care where the voltage came from. From this point of view, once you get down to the voltage across the resistor, it does not matter what type of circuit it is in. On the other hand, for any given power supply voltage, then the type of circuit and the value of external components certainly does affect the terminal voltage and thus the current through as well as the power dissipated by the resistor. In a parallel circuit, the voltage across your resistor remains basically the same no matter what resistance you put in parallel with it (unless you overload the power supply or the power supply has high internal resistance). In this case, the voltage across the resistor is the same as the power supply, current is I=E/R, R being that resistor only, and power is P=I^2 * R. In a series circuit the current through the resistors is I=E/R, R being the total resistance (including the other resistor(s)). The power dissipation in your resistor will then be P=I^2 * R, I being the series current we just calculated, and R being your resistor only. Since the other resistors affect the current, and since the current is the same no matter where you measure in a series circuit, then the voltage across your resistor and thus the power dissipation will be affected. The voltage across your resistor will be E=I*R, I being the series current we just calculated, and R being your resistor only. So, while the calculation for power dissipated in a particular resistor does not change relative to what type of circuit it is in, the calculation to arrive at the voltage across the resistor and/or the current through it (which you will then need to calculate power) does. Keep in mind there are other mechanical parameters that influence the actual case temperature of the resistor. Physical size of the case, composition, and airflow velocity, if any, will alter the case-to-ambient thermal conductivity. Ambient temperature will also be a factor in the final temperature.


Does the impedance of a parallel RLC circuit equal to the value of the resistor?

No. You have to consider the inductor and the capacitor. Impedance of RLC circuit is equal to to the Value of Resistor Only AND Only on Resonate frequency. otherwise u have to cnsider resistance inductance and capacitance together in series.


What is the impedance of a series circuit containing a resistor of 100 ohms and an inductor with an Xl equal to 80 ohms?

a bowl of cereal


Is electrical current greater before or after light bulb?

Electrical current is equal throughout a series circuit.


When resistors are connected in series in a circuit. what are the relationships between the voltage drops across the resistor and the currents through the resistors?

When resistors are connected in series in a circuit . the voltage drop across each resistor will be equal to its resistance, as V=IR, V is direct proportional to R. An A: The relationship is that the current will divide for each paths in a parallel circuit and the voltage drop across each will be the source voltage. In a series circuit the current will remain the same for each component but the voltage will divide to reflect each different component value. And the sum of all of the voltage drops will add to the voltage source