Since all other things are equal, it will take a year to go around the star. The mass of the planet hardly has any effect on its orbit - unless this mass is significant, compared to the star.
The orbital period of a planet can be calculated using Kepler's third law: P^2 = a^3 where P is the orbital period in years and a is the semi-major axis in astronomical units. For a planet with an average distance of 10 au, its orbital period would be approximately 31.6 years.
The approximate orbital period of an object at a distance of 65 AU from the sun would be around 177 years. This corresponds to Kepler's third law of planetary motion, which relates the orbital period of a planet to its distance from the sun.
Yes, the square of the orbital period of a planet is proportional to the cube of the average distance of the planet from the Sun. This relationship is known as Kepler's Third Law of Planetary Motion. It describes the mathematical relationship between a planet's orbital period and its average distance from the Sun.
Kepler's third law of planetary motion states that the square of a planet's orbital period is directly proportional to the cube of its average distance from the sun. This relationship allows us to predict the orbital period of a planet based on its distance from the sun, and vice versa.
From a star's orbital period, we can infer its distance from the object it is orbiting (based on Kepler's third law), the system's total mass (by combining other observable parameters), and potentially the star's luminosity and size if additional information is available. The orbital period can also give insights into the stability of the system and the potential presence of other planets or companions.
The distance of a planet from the sun affects its orbital period. Generally, the farther a planet is from the sun, the longer its orbital period will be. This relationship is described by Kepler's third law of planetary motion, which states that the square of a planet's orbital period is directly proportional to the cube of its average distance from the sun.
The orbital period of a planet can be calculated using Kepler's third law: P^2 = a^3 where P is the orbital period in years and a is the semi-major axis in astronomical units. For a planet with an average distance of 10 au, its orbital period would be approximately 31.6 years.
The approximate orbital period of an object at a distance of 65 AU from the sun would be around 177 years. This corresponds to Kepler's third law of planetary motion, which relates the orbital period of a planet to its distance from the sun.
A planet's orbital period is related to its distance from the Sun by Kepler's third law, which states that the square of the orbital period is proportional to the cube of the semi-major axis of the orbit. For an orbital period of 3 million years, the planet would need to be located at a distance of approximately 367 AU from the Sun.
Yes, the square of the orbital period of a planet is proportional to the cube of the average distance of the planet from the Sun. This relationship is known as Kepler's Third Law of Planetary Motion. It describes the mathematical relationship between a planet's orbital period and its average distance from the Sun.
Kepler's third law of planetary motion states that the square of a planet's orbital period is directly proportional to the cube of its average distance from the sun. This relationship allows us to predict the orbital period of a planet based on its distance from the sun, and vice versa.
From a star's orbital period, we can infer its distance from the object it is orbiting (based on Kepler's third law), the system's total mass (by combining other observable parameters), and potentially the star's luminosity and size if additional information is available. The orbital period can also give insights into the stability of the system and the potential presence of other planets or companions.
The repeating pattern of the stellar motion reveals the presence of a planet orbiting the star. By analyzing the variations in the star's radial velocity, astronomers can determine the planet's mass, orbital period, and distance from the star. This information helps to characterize the planet and understand its orbit within the stellar system.
Temperature and orbital period.
Yes, the equation p2 = a3, where p is a planet's orbital period in years and a is the planet's average distance from the Sun in AU. This equation allows us to calculate the mass of a distance object if we can observe another object orbiting it and measure the orbiting object's orbital period and distance.
To calculate the orbital period of a planet, you can use Kepler's third law of planetary motion. The formula is T2 (42 r3) / (G M), where T is the orbital period, r is the average distance from the planet to the sun, G is the gravitational constant, and M is the mass of the sun. Simply plug in the values for r and M to find the orbital period of the planet.
Temperature and orbital period.