No, synthesis is the breaking of bonds that forms water, while dehydration synthesis is the breaking of bonds by removing water
Dehydration synthesis is achieved by removing a water molecule to build new molecules, while hydrolysis breaks down molecules by adding a water molecule. In cells, dehydration synthesis is carried out by enzymes that catalyze the formation of new chemical bonds, while hydrolysis is facilitated by enzymes that break down complex molecules into simpler components. Both processes play crucial roles in cellular metabolism and the synthesis and breakdown of biological molecules.
Dehydration synthesis is a chemical process that links nucleotide monomers together to form DNA molecules. During this process, a water molecule is removed, allowing the nucleotides to bond together through covalent bonds. This helps in the formation of the long chains of nucleotides that make up the DNA molecule.
During protein synthesis, peptide bonds are formed through a process called condensation reaction. This reaction occurs between the carboxyl group of one amino acid and the amino group of another amino acid, resulting in the formation of a peptide bond and the release of a water molecule. This process is catalyzed by enzymes called ribosomes.
When biological molecules engage in condensation reactions, they release a water molecule as a byproduct. These reactions are commonly involved in building larger molecules by linking smaller subunits together. Examples include the formation of peptide bonds in proteins and glycosidic bonds in carbohydrates.
Dehydration synthesis cannot be reversed directly. To break down the molecules formed during dehydration synthesis, a hydrolysis reaction is required. This involves adding water to break the bonds between the molecules and return them to their original components.
yes cause of reaction between oxygen and hydrogen
A dehydration synthesis reaction forms peptide bonds between amino acids by removing a water molecule. In this process, the carboxyl group of one amino acid reacts with the amine group of another amino acid, resulting in the formation of a peptide bond and a dipeptide molecule.
The formation of a complex molecule by removing water is called dehydration synthesis. In this process, a molecule of water is removed as two smaller molecules join together to form a larger, more complex molecule.
Dehydration synthesis is achieved by removing a water molecule to build new molecules, while hydrolysis breaks down molecules by adding a water molecule. In cells, dehydration synthesis is carried out by enzymes that catalyze the formation of new chemical bonds, while hydrolysis is facilitated by enzymes that break down complex molecules into simpler components. Both processes play crucial roles in cellular metabolism and the synthesis and breakdown of biological molecules.
Monosaccharides are produced through the hydrolysis of polysaccharides, a reaction where water is added to break the glycosidic bonds linking sugar units together. This process results in the cleavage of the polymer into individual monosaccharide units. On the other hand, dehydration synthesis (or condensation) of monosaccharides forms polysaccharides by removing water to create glycosidic bonds.
During the formation of new bonds within a polypeptide, a molecule of water (H2O) is removed. This process is known as dehydration synthesis or condensation reaction, in which a hydroxyl (OH) group is removed from one amino acid and a hydrogen (H) atom is removed from the adjacent amino acid, resulting in the formation of a peptide bond.
The formation of peptide bonds releases water molecules.
aparently you have the same science paper... it does.
Dehydration synthesis is a chemical process that links nucleotide monomers together to form DNA molecules. During this process, a water molecule is removed, allowing the nucleotides to bond together through covalent bonds. This helps in the formation of the long chains of nucleotides that make up the DNA molecule.
water
Dehydration synthesis, also called condensation, is the type of reaction that builds polymers by removing water.
Polymers of carbohydrates, fats, and proteins are all synthesized from monomers through the process of dehydration synthesis or condensation reaction. In this process, monomers are joined together by removing a water molecule, which forms a covalent bond between the monomers, resulting in the formation of a polymer.