If you are referring to the fragmented lagging strand for DNA replication, the fragments are called Okazaki fragments.
The fragments of DNA produced from the lagging strand that must be joined are called Okazaki fragments. These fragments are short sections of DNA that are synthesized in the 5' to 3' direction away from the replication fork during DNA replication. They are later sealed together by DNA ligase to form a continuous DNA strand.
One is known as the Leading strand, and the other is known as the Lagging strand.
The leading strand is synthesized continuously in the 5' to 3' direction, making replication faster and more efficient. The lagging strand is synthesized discontinuously in short fragments called Okazaki fragments, which are later joined together by DNA ligase. This process of replication is slower and requires additional steps compared to the leading strand.
The lagging strand will have the Okazaki fragments. These short fragments are created as the DNA replication machinery synthesizes the new DNA strand discontinuously in the 5'-3' direction away from the replication fork.
Okazaki fragments are the small DNA fragments synthesized on the lagging strand during DNA replication. They are later joined together by DNA ligase to form a continuous strand.
The fragments of DNA produced from the lagging strand that must be joined are called Okazaki fragments. These fragments are short sections of DNA that are synthesized in the 5' to 3' direction away from the replication fork during DNA replication. They are later sealed together by DNA ligase to form a continuous DNA strand.
One is known as the Leading strand, and the other is known as the Lagging strand.
The leading strand is synthesized continuously in the 5' to 3' direction, making replication faster and more efficient. The lagging strand is synthesized discontinuously in short fragments called Okazaki fragments, which are later joined together by DNA ligase. This process of replication is slower and requires additional steps compared to the leading strand.
The lagging stand~Brainly
The lagging strand will have the Okazaki fragments. These short fragments are created as the DNA replication machinery synthesizes the new DNA strand discontinuously in the 5'-3' direction away from the replication fork.
Okazaki fragments are the small DNA fragments synthesized on the lagging strand during DNA replication. They are later joined together by DNA ligase to form a continuous strand.
The two strands of DNA in animal cells are arranged backwards to each other - the start of one is paired with the ending of the other. However, the enzyme that replicates DNA (DNA polymerase) can only work from start to finish. On one strand, DNA polymerase can work front to back in a continuous chain - the strand that allows this is called the leading strand because it "leads" in completion status. On the other strand, the DNA polymerase has to work backwards in pieces and then put the pieces back together into a single chain - the strand that causes this is called the lagging strand because it "lags behind" the other in completion status.
The lagging strand of DNA is replicated using a process called Okazaki fragments. These are short DNA fragments synthesized in the 5' to 3' direction by DNA polymerase, and are subsequently joined together by DNA ligase to form a continuous strand.
DNA ligase is the enzyme used to join the DNA strand that is replicated in small segments called Okazaki fragments. It helps to seal the breaks in the sugar-phosphate backbone of the DNA, ensuring that the fragments are connected into a continuous strand.
A lagging strand is one of two strands of DNA found at the replication fork, or junction, in the double helix; the other strand is called the leading strand. A lagging strand requires a slight delay before undergoing replication, and it must undergo replication discontinuously in small fragments.
The lagging strand is synthesized in fragments called Okazaki fragments. These fragments are short sequences of DNA synthesized in the opposite direction of the replication fork. Once the DNA polymerase reaches the next RNA primer, a new fragment begins.
DNA ligase is the enzyme responsible for connecting the Okazaki fragments on the lagging strand during DNA replication. It catalyzes the formation of phosphodiester bonds to join the individual nucleotides together.