answersLogoWhite

0

What does the phloem cell do?

Updated: 8/11/2023
User Avatar

Wiki User

13y ago

Best Answer

The phloem originates, and grows outwards from, meristematic cells in the vascular cambium. Phloem is produced in phases. Primary phloem is laid down by the apical meristem and develops from the procambium. Secondary phloem is laid down by the vascular cambium to the inside of the established layer(s) of phloem.

In some eudicot families (Apocynaceae, Convolvulaceae, Cucurbitaceae, Solanaceae, Myrtaceae, Asteraceae), phloem also develops on the inner side of the vascular cambium; in this case a distinction between external phloem and internal phloem or intraxylary phloem is made. Internal phloem is mostly primary, and begins differentiation later than the external phloem and protoxylem, though it's not without exceptions. In some other families (Amaranthaceae, Nyctaginaceae, Salvadoraceae) the cambium also periodically forms inward strands or layers of phloem, embedded in the xylem: such phloem strands are called included phloem or interxylary phloem

The Pressure flow hypothesis was a hypothesis proposed by Ernst Munch in 1930 that explained the mechanism of phloem translocation. A high concentration of organic substance inside cells of the phloem at a source, such as a leaf, creates a diffusion gradient that draws water into the cells. Movement occurs by bulk flow; phloem sap moves from sugar sources to sugar sinks by means of turgor pressure gradient. A sugar source is any part of the plant that is producing or releasing sugar.

During the plant's growth period, usually during the spring, storage organs such as the roots are sugar sources, and the plant's many growing areas are sugar sinks. The movement in phloem is multidirectional, whereas, in xylem cells, it is unidirectional (upward).

After the growth period, when the meristems are dormant, the leaves are sources, and storage organs are sinks. Developing seed-bearing organs (such as fruit) are always sinks. Because of this multi-directional flow, coupled with the fact that sap cannot move with ease between adjacent sieve-tubes, it is not unusual for sap in adjacent sieve-tubes to be flowing in opposite directions.

While movement of water and minerals through the xylem is driven by negative pressures (tension) most of the time, movement through the phloem is driven by positive hydrostatic pressures. This process is termed translocation, and is accomplished by a process called phloem loading and unloading. Cells in a sugar source "load" a sieve-tube element by actively transporting solute molecules into it. This causes water to move into the sieve-tube element by osmosis, creating pressure that pushes the sap down the tube. In sugar sinks, cells actively transport solutes out of the sieve-tube elements, producing the exactly opposite effect.

Some plants however appear not to load phloem by active transport. In these cases a mechanism known as the polymer trap mechanism was proposed by Robert Turgeon. In this case small sugars such as sucrose move into intermediary cells through narrow plasmodesmata, where they are polymerised to raffinose and other larger oligosaccharides. Now they are unable to move back, but can proceed through wider plasmodesmata into the sieve tube element.

The symplastic phloem loading (polymer trap mechanism above) is confined mostly to plants in tropical rain forests and is seen as more primitive. The actively-transported apoplastic phloem loading is viewed as more advanced, as it is found in the later-evolved plants, and particularly in those in temperate and arid conditions. This mechanism may therefore have allowed plants to colonise the cooler locations.

Organic molecules such as sugars, amino acids, certain hormones, and even messenger RNAs are transported in the phloem through sieve tube elements.

User Avatar

Wiki User

13y ago
This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: What does the phloem cell do?
Write your answer...
Submit
Still have questions?
magnify glass
imp