answersLogoWhite

0

Photosystem's electron travel through the electron transport chain(etc) where ATP is produced and then back to the photosystem. In non-cyclic photophosphorylation, Photosystem II electron then is absorbed by photosystem I, photosystem I electron used to form NADPH and photosystem II gets its electron from photolysis of water.

For you unfortunate children using Novanet: They move through an electron transport chain to photosystem 1.

User Avatar

Lesley Schulist

Lvl 10
3y ago

What else can I help you with?

Continue Learning about Biology

What happens to a photon when it hits a leaf?

When a photon hits a leaf, it may be absorbed by chlorophyll molecules, which are specialized pigments that can capture the energy of the photon and initiate photosynthesis. This absorbed energy is then used to drive chemical reactions that convert carbon dioxide and water into glucose and oxygen.


When a pigment molecule absorbs a photon one of its electrons?

the outer electrons which are weakly attracte towards nucleus of a pigment can absorb a photon and gets exited to its unstable higher levels. It releases more energy when it gets stabilized to its normal state. This energy can be trapped by the electron of next pigment molecules. In this way the energy gets transfered from one to other.


What happens when a photon from sunlight strikes a chlorophyll a molecule?

When a photon strikes a pigment molecule such as chlorophyll, the energy from the photon is passed to the chlorophyll. This energy then continues to pass between molecules until it hits the reaction center, where the reaction of photosynthesis' glucose creation occurs.


Light travels to plants as tiny packets of radiant energy called?

photon


Describe how energy from sunlight is transfered to ATP and NADPH and what are they used for?

In case of plants, there is biological reduction. Carbon bi oxide and water is converted to glucose. Energy from sunlight is trapped in the form of ATP in chlorophyl. This ATP is used to in biological reduction. Energy consumed in biological reduction is same photon by photon, to energy released during biological or chemical oxidation. ( Law of conservation of energy in chemical reactions.)

Related Questions

Which of the following complexes will absorb a photon with the lowest energy level?

The complex with the lowest energy level will absorb a photon.


What happens to an atom when it loses an electon?

they jump to a higher energy level


Why is glass transparent?

When the electrons in molecules are unable to absorb the energy of incident photon, the photon continues along its path. This happens in the case of glass, even though glass is not 100 percent transparent, as some of the photon energy is absorbed by the glass electrons.


What determines which photon an atom can absorb or emit?

An atom can absorb or emit photons based on its energy levels and electronic structure. When a photon energy matches the energy difference between two energy levels in the atom, it can be absorbed or emitted. This is governed by the quantized nature of energy levels in atoms.


What happens when water absorbs an IR photon?

When water absorbs an infrared (IR) photon, the molecular vibrations of the water molecules increase as they absorb the energy from the photon. This increase in vibrational energy causes the water molecules to move more vigorously and increase in temperature.


Can you explain why an electron's energy increases when it absorbs a photon and also describe what happens to the photon in this process?

When an electron absorbs a photon, its energy increases because the photon transfers its energy to the electron. The photon ceases to exist as a discrete particle and its energy is absorbed by the electron, causing it to move to a higher energy level.


What pigment molecules absorb a photon and pass the energy to the reaction-center complex?

chlorophyll


Can free electron absorb photon?

Yes, free electrons can absorb photons. When a photon interacts with a free electron, it can transfer its energy to the electron, causing it to move to a higher energy level or even be ejected from the material. This process is the basis for various phenomena such as photoelectric effect and Compton scattering.


Can the electron in the ground state of hydrogen absorb a photon of energy 13.6eV and greater than 13.6eV?

yes , the electron in the ground state of the hydrogen atom will absorb a photon of energy 13.6ev but not greater than 13.6 ev . because 13.6 ev is the energy which excites the hydrogen atom


Could an atom emit one photon of blue light after absorbing only one photon of red light?

No, it could not. A blue photon carries more energy than a red photon, since the blue photon's frequency is higher. That means one red photon wouldn't deliver enough energy to the atom to give it the energy to emit a blue photon.


If an electron is in an excited state it must lose energy when it falls to a lower state. What happens to the energy that is lost?

The energy that is lost when an electron falls to a lower state is emitted as a photon of light. This process is known as photon emission, and the energy of the emitted photon corresponds to the energy difference between the initial and final states of the electron.


When sunlight excites electrons how do the electrons change?

Depending on the energy (frequency) of the specific photon hitting the electron, one of three events happens: nothing, the electron is excited, or the electron leaves the atom. If the energy of the photon very high, the electron can absorb the energy and escape the nucleus' pull. This is called ionization. If the energy of the photon lines up with the energy spacing in the atoms energy levels, the electron will move to a higher energy state, becoming excited. The electron then returns to its original energy level, releasing the energy as light. If the energy of the photon does not fall into one of these categories, the electron does not interact with it. In terms of actually changing the electron, it only changes in energy, not any other property.