The sequence of nucleotides of the complementary strand will be the nucleotides which bind to the nucleotides of the template. In DNA, adenine binds to thymine and cytosine binds to guanine. The complementary strand will therefore have an adenine where the template strand has a thymine, a guanine where the template has a cytosine, etc.
For example:
If the template strand is ATG-GGC-CTA-GCT
Then the complementary strand would be TAC-CCG-GAT-CGA
If one strand of DNA has a nucleotide base sequence of tcaggtccat, its complementary strand is agtccaggta. Adenine pairs with thymine, while guanine pairs with cytosine.
A complimentary DNA sequence is the genetic code on the partner strand that aligns with and corresponds to (matches) the code on the primary strand. Each nucleotide has a match, A matches T and C matches G, therefore the complimentary sequence for ATCGA is TAGCT.
A palindromic DNA sequence is one where the nucleotide sequence reads the same forwards and backwards on both strands. In the double-stranded DNA molecule, the two strands are complementary and run anti-parallel to each other. This means that the palindromic sequence on one strand will have its complementary sequence on the other strand.
The complementary DNA strand to TAC-CGG-AGT is ATG-GCC-TCA. In DNA, adenine pairs with thymine (A-T) and cytosine pairs with guanine (C-G), so the complementary strand is created by matching these base pairs.
The complementary sequence for a DNA sequence is formed by replacing each nucleotide with its complementary base. For the given sequence "atgcccgggtgtcgtagttga," its complementary sequence would be "tacgggccacagcatcaact."
If one strand of DNA has a nucleotide base sequence of tcaggtccat, its complementary strand is agtccaggta. Adenine pairs with thymine, while guanine pairs with cytosine.
A complimentary DNA sequence is the genetic code on the partner strand that aligns with and corresponds to (matches) the code on the primary strand. Each nucleotide has a match, A matches T and C matches G, therefore the complimentary sequence for ATCGA is TAGCT.
A palindromic DNA sequence is one where the nucleotide sequence reads the same forwards and backwards on both strands. In the double-stranded DNA molecule, the two strands are complementary and run anti-parallel to each other. This means that the palindromic sequence on one strand will have its complementary sequence on the other strand.
If you know the sequence of one strand of a DNA molecule, you can predict the base sequence of the complementary strand based on base pairing rules: adenine (A) pairs with thymine (T), and cytosine (C) pairs with guanine (G). For example, if the known strand has the sequence 5'-ATCG-3', the complementary strand would have the sequence 3'-TAGC-5'. This complementary relationship allows for the accurate prediction of one strand's sequence from the other.
The complementary strand for the DNA sequence ccgatacgcggtatcccagggctaattuaa is ggctatgcgccatatgggtaatgtaagg. In DNA, adenine (A) pairs with thymine (T), and cytosine (C) pairs with guanine (G). Therefore, each nucleotide in the original strand is matched with its complementary base to form the new strand.
The complementary DNA strand to TAC-CGG-AGT is ATG-GCC-TCA. In DNA, adenine pairs with thymine (A-T) and cytosine pairs with guanine (C-G), so the complementary strand is created by matching these base pairs.
The complementary sequence for a DNA sequence is formed by replacing each nucleotide with its complementary base. For the given sequence "atgcccgggtgtcgtagttga," its complementary sequence would be "tacgggccacagcatcaact."
I though the question is asking the complimentary strand of the sequence. It would be TCCGGTAATCGGGATAAGCCCATATTTACC. Adenine pairs with thymine and guanine pair up cytosine by hydrogen bonds.
The nucleotide sequence of the mRNA strand is determined by the template DNA strand during transcription. It is complementary to the DNA template and consists of adenine (A), uracil (U), cytosine (C), and guanine (G). For example, if the DNA template strand is 3'-ATCGTACG-5', the corresponding mRNA sequence would be 5'-UAGCAUGC-3'.
The complementary sequence of a DNA strand is written with the beginning letters of the bases: adenine (A), cytosine (C), guanine (G), and thymine (T). You would replace each letter with its complementary nucleotide. Replace: A for T T for A C for G G for C
If a strand of DNA has the sequence aagctc, transcription will result in a mRNA molecule with the complementary sequence uucgag. Transcription is the process of creating a mRNA molecule using DNA as a template.
The order of bases in the second strand of a DNA molecule is complementary to the first strand, following the base pairing rules (A with T, C with G). So, if the first strand has the sequence ATCG, the second strand would have the sequence TAGC.