The sequence of nucleotides of the complementary strand will be the nucleotides which bind to the nucleotides of the template. In DNA, adenine binds to thymine and cytosine binds to guanine. The complementary strand will therefore have an adenine where the template strand has a thymine, a guanine where the template has a cytosine, etc.
For example:
If the template strand is ATG-GGC-CTA-GCT
Then the complementary strand would be TAC-CCG-GAT-CGA
If one strand of DNA has a nucleotide base sequence of tcaggtccat, its complementary strand is agtccaggta. Adenine pairs with thymine, while guanine pairs with cytosine.
A complimentary DNA sequence is the genetic code on the partner strand that aligns with and corresponds to (matches) the code on the primary strand. Each nucleotide has a match, A matches T and C matches G, therefore the complimentary sequence for ATCGA is TAGCT.
A palindromic DNA sequence is one where the nucleotide sequence reads the same forwards and backwards on both strands. In the double-stranded DNA molecule, the two strands are complementary and run anti-parallel to each other. This means that the palindromic sequence on one strand will have its complementary sequence on the other strand.
The complementary sequence for a DNA sequence is formed by replacing each nucleotide with its complementary base. For the given sequence "atgcccgggtgtcgtagttga," its complementary sequence would be "tacgggccacagcatcaact."
The complementary DNA strand to TAC-CGG-AGT is ATG-GCC-TCA. In DNA, adenine pairs with thymine (A-T) and cytosine pairs with guanine (C-G), so the complementary strand is created by matching these base pairs.
If one strand of DNA has a nucleotide base sequence of tcaggtccat, its complementary strand is agtccaggta. Adenine pairs with thymine, while guanine pairs with cytosine.
A complimentary DNA sequence is the genetic code on the partner strand that aligns with and corresponds to (matches) the code on the primary strand. Each nucleotide has a match, A matches T and C matches G, therefore the complimentary sequence for ATCGA is TAGCT.
A palindromic DNA sequence is one where the nucleotide sequence reads the same forwards and backwards on both strands. In the double-stranded DNA molecule, the two strands are complementary and run anti-parallel to each other. This means that the palindromic sequence on one strand will have its complementary sequence on the other strand.
The complementary sequence for a DNA sequence is formed by replacing each nucleotide with its complementary base. For the given sequence "atgcccgggtgtcgtagttga," its complementary sequence would be "tacgggccacagcatcaact."
The complementary DNA strand to TAC-CGG-AGT is ATG-GCC-TCA. In DNA, adenine pairs with thymine (A-T) and cytosine pairs with guanine (C-G), so the complementary strand is created by matching these base pairs.
I though the question is asking the complimentary strand of the sequence. It would be TCCGGTAATCGGGATAAGCCCATATTTACC. Adenine pairs with thymine and guanine pair up cytosine by hydrogen bonds.
If a strand of DNA has the sequence aagctc, transcription will result in a mRNA molecule with the complementary sequence uucgag. Transcription is the process of creating a mRNA molecule using DNA as a template.
The complementary sequence of a DNA strand is written with the beginning letters of the bases: adenine (A), cytosine (C), guanine (G), and thymine (T). You would replace each letter with its complementary nucleotide. Replace: A for T T for A C for G G for C
The order of bases in the second strand of a DNA molecule is complementary to the first strand, following the base pairing rules (A with T, C with G). So, if the first strand has the sequence ATCG, the second strand would have the sequence TAGC.
Transcription is the process in which a complementary RNA sequence is synthesized from a DNA template strand. This process occurs in the cell nucleus and is carried out by the enzyme RNA polymerase.
its tcaa
The nucleotide sequence of the newly synthesized strand during DNA replication is determined by complementary base pairing. Adenine (A) pairs with thymine (T), and guanine (G) pairs with cytosine (C). The existing DNA strand serves as a template for the formation of the complementary strand.