answersLogoWhite

0

The restriction enzyme EcoRI cuts DNA at a specific sequence of bases, which is GAATTC.

User Avatar

AnswerBot

5mo ago

What else can I help you with?

Related Questions

What is the specific DNA sequence recognized by the EcoRI restriction enzyme, known as the EcoRI cut site?

The specific DNA sequence recognized by the EcoRI restriction enzyme, known as the EcoRI cut site, is 5'-GAATTC-3'.


Which restriction enzyme did you use to cut the DNA?

The restriction enzyme used to cut the DNA was EcoRI.


What is Example of restriction enzyme?

A restriction enzyme (also known as restriction endonuclease) is protein which cuts DNA up at specific sequences (called restriction sites) in a genome. For example, the commonly used restriction endonuclease EcoRI recognizes every DNA sequence GAATTC and cuts at the point between the guanine and the adenine in that sequence, forming blunt ends (or straight, even ends). Interestingly and coincidentially, the restriction site for most restriction enzymes are genetic palindromes (the sequence reads exactly the same backwards on the complementary strand). In the case of EcoRI, the two complementary DNA strands for the restriction site are:5'-- GAATTC --3'3'-- CTTAAG --5'After this DNA sequence is cut, it might look something like this:5'-- G AATTC --3'3'-- C TTAAG --5'


Where in the DNA sequence does the restriction enzyme EcoR1 specifically cut?

The restriction enzyme EcoR1 specifically cuts the DNA sequence at the recognition site GAATTC.


What is the term that describes the sequence of DNA that a restriction enzyme finds and cuts?

Template Sequence


What will cut a DNA sequence only if it matches the sequence precisely?

A restriction enzyme will cut a DNA sequence only if it matches the specific recognition sequence of that enzyme. These enzymes are highly specific and will cleave the DNA at a particular site when the target sequence is present in the DNA molecule.


What are restriction enzymes?

Restriction enzymes (also known as restriction endonucleases) are proteins which cut DNA up at specific sequences in the genome. For example, the commonly used restriction endonuclease EcoRI recognizes every point in DNA with the sequence GAATTC, and cuts at the point between the Guanine and Adenine. Interestingly, the recognition sequences for most restriction endonucleases are genetic palindromes, e.g., the sequence reads exactly the same backwards on the complementary strand. In the case of EcoRI, the two complementary DNA strands for the recognition sequence are: 5'--GAATTC ---3'3'--CTTAAG--5'


What is the term that describes sequence of DNA that a restriction enzyme finds and cuts?

Template Sequence


How do you identify restriction enzyme?

Restriction enzymes can be identified based on their specific recognition sequence, which is a short, palindromic DNA sequence that the enzyme binds to and cleaves. Each restriction enzyme recognizes a specific sequence and cuts the DNA at a specific location within or near that sequence. Additionally, the supplier or manufacturer of the enzyme will provide information on its specific recognition sequence and optimal conditions for use.


What is GAATTC?

It is a sequence of DNA that is also a palindrom. i.e. the complimentary sequence of DNA would read the same way (but in the other direction). g a a t t c c t t a a g Moreover it is the sequence of DNA recognised by the restriction endonuclease EcoR1, the first such enzyme to be discovered. These enzymes have been important tools in science allowing pieces of DNA to be specifically excised and manipulated.


A molecule that cuts DNA molecules at a specific sequence of nucleotides?

A restriction enzyme


If you took a linear piece of DNA and cut it with the restriction enzyme EcoRI and it had three restriction sites for EcoRI, how many fragments would you produce What if you had a circular piece of DNA?

If the plasmid has 3 recognition sequences for a given restriction endonuclease, then 4 linear DNA fragments are obtained because, if the DNA is linear then the number of fragments obtained is (N+1) whereas if the DNA is circular then the number of fragments obtained will be N for N recognition sequences for the given restriction endonuclease in a plasmid.