End of the muscle fiber
I think it is the motor end plate
A molecule such as a neurotransmitter or hormone that binds to a receptor is called a ligand. This binding triggers a biological response in the target cell, influencing its function.
Benzodiazepines enhance the activity of the neurotransmitter GABA at its receptor in the brain, which leads to a calming and sedative effect. This interaction helps to reduce anxiety, promote relaxation, and improve sleep quality.
Receptors are proteins on the surface of nerve cells that bind to specific neurotransmitters, which are chemical messengers. When a neurotransmitter binds to a receptor, it triggers a series of events that allow the nerve cell to transmit signals to other cells in the nervous system. This interaction between receptors and neurotransmitters is essential for communication within the nervous system.
a receptor structure in a ligand-gated sodium-ion pore. The receptor is like a cave which is an outer part of a protein structure which also has a tunnel which can be open or closed, and the presence of the neurotransmitter causes the tunnel (pore) to open.
Excitatory neurotransmitter
When acetylcholine binds to its receptor in the sarcolemma of a muscle cell, it triggers an action potential to be generated along the muscle cell membrane. This action potential then spreads along the sarcolemma and eventually leads to muscle contraction by initiating the release of calcium ions from the sarcoplasmic reticulum.
Multiple receptor subtypes allow for more "fine-tuned" neuromodulation of a given "signal" in a neural network. Each receptor subtype typically has a different binding affinity for the given neurotransmitter. Therefore, the neurotransmitter may bind more strongly or more weakly to one subtype over another. This is most likely an effect of genetic variation, as the genes coding for the protein(s) present in the receptor slightly vary from subtype to subtype, yet still allow for binding by the neurotransmitter ligand.
Since only 1 neurotransmitter fits in the receptor sites, you can say that the receptor sites is the locked door waiting for the neurotransmitter "keys".
SEROTONIN is a neurotransmitter that inhibits pain by blocking pain causing chemicals out of their receptor sites
Molecules that are similar enough to a neurotransmitter to bind to its receptor sites on a dendrite and mimic its effects are called agonists. These can be naturally occurring substances or synthetic drugs that activate receptor sites, leading to similar physiological responses as the original neurotransmitter. Examples include morphine, which mimics endorphins, and nicotine, which mimics acetylcholine.
A molecule such as a neurotransmitter or hormone that binds to a receptor is called a ligand. This binding triggers a biological response in the target cell, influencing its function.
beta neuron
Neurotransmitter receptor sites on ligand-gated ion pores.
a key fitting in the lock of a door
How a neurotransmitter interacts with the receptors determines its effects. They activate receptors to perform specific functions in the body.the type of receptor
ligand that binds to it. For example, a receptor can trigger different signaling pathways or cellular responses if it binds to different ligands, even if they bind to the same binding site on the receptor. This is known as ligand-dependent receptor activation.
When a neurotransmitter binds to a receptor site on a neuron, it can cause various effects depending on the type of receptor and neurotransmitter involved. This binding can lead to the opening or closing of ion channels, resulting in changes in the neuron's membrane potential and potentially generating an action potential. Additionally, it may activate intracellular signaling pathways that influence cell function and communication. Overall, this process plays a crucial role in neuronal signaling and the overall functioning of the nervous system.