answersLogoWhite

0


Best Answer

ATM is not contention-based or shared like FDDI, ethernet or token ring. A full 155 Mbps is continuously available to every endstation. ATM transmits fixed-length 53 bytes cells. It consists of a header field (5 bytes) and information field of 48 bytes. The header field contains routing info and the information field carries the service data. Small fixed length cells facilitate efficient multiplexing and a traffic prioritization scheme ensures delay-sensitive traffic receives special consideration. Multiplexing techniques allow more than one service to share a particular ATM link at any given time. Services are organized into virtual channels(VC) and virtual paths(VP). A VC identifies the service and a VP identifies a collection of VC's. ATM can be switched at both the VP and VC level.

ATM uses cell switches, not bridges or routers. Switching is done by connecting one port to another directly. All this is done in hardware which makes it more efficient and faster. Bridges and routers also introduce latency/delays. This is because bridges and routers normally process large/variable length packets. These large packets introduce noticeable application delay to a user.

In Ehternet or FDDI rings, media is shared. As more stations are added, available bandwidth to each station decreases. When this happens, we normally segment the network into smaller peices by adding bridges and routers. However, these now increases latency since packets must cross more devices between endstations. Additionally, adding more routers/bridges means adding more subnets and additional complexity. So traditonal networks scales poorly. As we add more bandwidth by adding more devices like bridges and routers, we suffer from higher latency, worse performance end to end and added complexity to a network.

ATM is scalable and inherently exhibits low latentcy. ATM networks are not contention-based. There are built on point-to-point connections between endstations and switches. Each connection runs at a full guaranteed 155Mbps even through a switch. Stations are added by plugging in to an unused port or additional port modules. Also good ATM switches can tie switches/modules together to act like a bigger switch. Also, switch-to-switch rates normally can run faster than 155 Mbps.

Price of ATM technology is dropping rapidly. Price of an ATM adapter card is about the cost of an Ethernet NIC card in 1983.

User Avatar

Wiki User

14y ago
This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: Why does ATM use small fixed length cells?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Biology

10.0 moles of a liquid are converted to its vapor at its boiling point 100 K and at 1 ATM The molar heat of vaporization of the liquid is 200 kjmole at this T and P Calculate work and heat?

10 mol x 200 kJ/mol = 2000 kJ S = 20 kJ/K


How biotechnology can help banking?

Though biotechnology is still not widely used in the banking industry there is still a lot of scope to improve security measures on banking transactions. Banks have started using Biometric ATM machines that scan a customer's Retina or use his Finger print to validate transactions. Also most banks safety vaults are secured using biometric recognition security devices.


Does cocaine make your eyes sensitive to light?

Well , I'm not an expert , but after being up for three days straight on coke , I noticed one of my eyes had speckles in it like when you need to wipe your eyes in the morning , unfortunatley , it didn't go away so I looked into it online and read that cocaine can damage the surface of your eyes , so thanks to my bad habit my eye is now permanently damaged, you live and learn I suppose.


How much psi can a human body withstand?

Depends whether it is sustained force or not.Note1: In this answer 'g' is used to refer to g-force not gramsNote2: The g-force of an object is its equal to its acceleration relative to free-fall. This means that an object on earth that is not falling or rising (relative to gravity) is experiencing 1g (0g being weightless). This in turn also means that 1g is equal to your weight etcHuman tolerances depend on the magnitude of the g-force, the length of time it is applied, the direction it acts, the location of application, and the posture of the body. The human body is flexible and deformable, particularly the softer tissues. A hard slap on the face may briefly impose hundreds of g locally but not produce any real damage; a constant 16 g for a minute, however, may be deadly.Vertical axis g-forceAircraft, in particular, exert g-force along the axis aligned with the spine. This causes significant variation in blood pressure along the length of the subject's body, which limits the maximum g-forces that can be tolerated.In aircraft, g-forces are often towards the feet, which forces blood away from the head; this causes problems with the eyes and brain in particular. As g-forces increase a Brownout can occur, where the vision loses hue. If g-force is increased further tunnel vision will appear, and then at still higher g, loss of vision, while consciousness is maintained. This is termed "blacking out". Beyond this point loss of consciousness will occur, sometimes known as "G-LOC" ("loc" stands for "loss of consciousness"). Beyond G-LOC, if g-forces are not quickly reduced, death can occur.While tolerance varies, with g-forces towards the feet, a typical person can handle about 5 g (49m/s²) before g-loc, but through the combination of special g-suits and efforts to strain muscles-both of which act to force blood back into the brain-modern pilots can typically handle 9 g (88 m/s²) sustained (for a period of time) or more.Resistance to "negative" or upward g's, which drive blood to the head, is much lower. This limit is typically in the −2 to −3 g (−20 m/s² to −30 m/s²) range. The subject's vision turns red, referred to as a red out. This is probably because capillaries in the eyes swell or burst under the increased blood pressure.Horizontal axis g-forceThe human body is better at surviving g-forces that are perpendicular to the spine. In general when the acceleration is forwards, so that the g-force pushes the body backwards (colloquially known as "eyeballs in") a much higher tolerance is shown than when the acceleration is backwards, and the g-force is pushing the body forwards ("eyeballs out") since blood vessels in the retina appear more sensitive in the latter direction.Early experiments showed that untrained humans were able to tolerate 17 g eyeballs-in (compared to 12 g eyeballs-out) for several minutes without loss of consciousness or apparent long-term harm.


In aerobic respiration which end products contain carbon atoms from glucose The hydrogen atoms from glucose The oxygen atoms from glucose The energy stored un the glucose molecules?

C­6­H­12­ + 19 O2 ←→ 12 CO2 + 14 H2O agreed? so, the carbon atoms will be in CO2 The Oxygen will be in CO2 as well (the Oxygen from H2O is from the atmosphere (breathing)) and the energy will be first transformed to NADH, and FADH2, which will later be changed to ATP from the Electron Transport Chain (ETC) So, as a final product, you will have 36~38 ATP (energy) lol and yeah... im doing the same lab ATM :P

Related questions

Which of the following WAN technologies uses 53 byte fixed-length cells?

ATM


ATM networks transfer all data as fixed-length cells consisting of how many bytes?

53 bytes


How does Asynchronous Transfer Mode ATM transmit data?

As fixed-size cells via a fixed channel between two points


How does ATM differ from every other WAN?

it uses fixed-sized cells to carry data


Why is ATM important to the cells?

ATM is the chief power house of all cells.


Describe the process of segmentation and reassembly?

Segmentation and Reassembly refers to the process used to fragment and reassemble variable length packets into fixed length cells so as to allow them to be transported across Asynchronous Transfer Mode (ATM) networks or other cell based infrastructures. Since ATM's payload is only 48 bytes, nearly every packet from any other protocol has to be processed in this way. Thus, it is an essential process for any ATM node. It is usually handled by a dedicated chip, called the SAR.


What is the pressure of a fixed volume of hydrogen gas at 34.9C if it has a pressure of 1.33 ATM at 15.0C?

2.79 ATM


What is the common shape of an ATM?

ATM Machines are usually shaped rectangular if a stand alone and square to a rectangle if fixed or inbuilt.


What sets ATM apart from Ethernet is the size of its what?

Its fixed packet size.


What is the length of a PIN in an ATM card?

Four characters.


How does ATM differ from every other WAN technology described in this chapter?

It uses fixed-sized cells to carry data. Network + Guide To Networks Fifth Ed. Review Question Chapter 7 #10


Difference between ATM and frame relay?

ATM as well as frame relay are switched WANs. Frame relay protocol was designed to replace X.25 . ATM is advantageous as it is a cell network and a cell network uses the cell as a basic unit of data exchange and are small and fixed size block of information .