A submarine has neutral buoyancy when its weight is exactly equal to the buoyant force acting on it, causing it to remain suspended at a constant depth without sinking or rising. This balance between weight and buoyant force allows the submarine to move up or down in the water column as needed.
When an object is immersed in water, it experiences a buoyant force that counters the force of gravity. This buoyant force reduces the effective weight of the object, making it feel lighter, even though its actual mass remains the same. The weight of the object underwater will be the difference between its actual weight and the buoyant force acting on it.
volume
When the weight of any object surrounded by fluid is greater than the buoyant force on it, it sinks. (The buoyant force is just the weight of the fluid that would be in that space if the submerged object were not there.)
A submarine pumps water out of its flotation tanks to decrease its overall density, allowing it to become buoyant and rise to the surface. By removing water, the submarine reduces its weight relative to the volume of water it displaces, which is governed by Archimedes' principle. As the submarine's density becomes less than that of the surrounding water, it ascends. This process is crucial for maneuvering between underwater and surface positions.
If the weight of the submarine is equal to the upthrust acting on it, the submarine will float. This is due to Archimedes' principle, which states that an object will float when the buoyant force acting on it is equal to the gravitational force pulling it down.
The buoyant force on a floating object depends on the weight of the fluid displaced by the object, not on the weight of the object itself. This is known as Archimedes' principle.
The buoyant force on any object in a fluid ... whether partially or fully submerged ... isequal to the weight of the fluid displaced by the object. That's related to the object'svolume, and has nothing to do with its weight.
A submarine actually controls its weight by allowing water to enter or exit hollow chambers in its hull. These chambers are called ballast tanks. Ballast is anything carried in a ship to give stability. When water is allowed to flood into a submarine's ballast tanks, the weight of the submarine increases. When this increased weight exceeds the submarine's buoyancy, the submarine will sink. To allow the submarine to rise, air is pumped into the ballast tanks. The air forces out the water, reducing the weight of the submarine. The submarine then becomes lighter, buoyancy increases, and it floats to the surface. A submarine can also be made to "float" underwater at any depth by adjusting the amount of water weight in its ballast tanks.
When a submarine is traveling at a constant depth, the primary forces acting on it are buoyancy, gravity, drag (or hydrodynamic resistance), and thrust. The buoyant force, which acts upward, is equal to the weight of the water displaced by the submarine, while gravity pulls the submarine downward. For the submarine to maintain a constant depth, these forces must be balanced, meaning the buoyant force equals the gravitational force. Additionally, the thrust generated by the submarine's engines must counteract the drag force to maintain a steady speed.
The buoyant force is equal to the weight of the displaced fluid (Archimedes Principle). A gallon jug underwater will have a buoyant force equal to the weight of the displaced water: eight pounds. The total weight will also include the normal downward weight of the jug itself and the air it contains.
No, but the difference between the buoyant force and the weight of the object will determine whether it floats or sinks.