1 mole equals 6.022 x 10 to the 23 molecules
To convert from molecules to moles, divide the number of molecules by Avogadro's number (6.022 x 10^23 molecules/mol). Therefore, 98.3 molecules of aluminum hydroxide would be approximately 0.163 moles.
1 mole is 6.022 141 293 x 1023 molecules. (Avogadro's constant). If you have 3 moles of CO2, then you have 3 x 6.022 141 293 x 1023 molecules = 1.806642388 x 1024 molecules!
The value is 1,328.10e-3 moles.
To convert from molecules to moles, divide the number of molecules by Avogadro's number (6.022 x 10^23). So, for 5.01020 molecules of carbon, the number of moles of carbon would be approximately 8.33 x 10^-3 moles.
To find the number of moles, you first need to determine the molar quantity of iodine molecules based on Avogadro's number. Since 1 mole contains 6.022 x 10^23 molecules, you would divide 1.80 x 10^24 molecules by Avogadro's number to get the number of moles.
To convert from molecules to moles, divide the number of molecules by Avogadro's number (6.022 x 10^23 molecules/mol). Therefore, 98.3 molecules of aluminum hydroxide would be approximately 0.163 moles.
3
3 x 12 = 36 moles of Nitrogen atoms N or 18 moles of Nitrogen molecules N2
3 x 6.02E23 molecules.
1 mole is 6.022 141 293 x 1023 molecules. (Avogadro's constant). If you have 3 moles of CO2, then you have 3 x 6.022 141 293 x 1023 molecules = 1.806642388 x 1024 molecules!
The reaction is :- 2C2H6 + 7O2 ----------> 4CO2 + 6H2O When one mole ethane is combusted 7/2 moles of oxygen are used. When 3 moles of ethane are combusted 3 x 7/2 moles of oxygen used. No. of oxygen molecules consumed =6.022 x 1023 x7/2= 21.077 x 1023=2.107 x 1024 molecules.
The value is 1,328.10e-3 moles.
To convert from molecules to moles, divide the number of molecules by Avogadro's number (6.022 x 10^23). So, for 5.01020 molecules of carbon, the number of moles of carbon would be approximately 8.33 x 10^-3 moles.
The mass of 3 mol of ammonia is 51,093 g; the number of ammonia molecules in 3 moles is18,066422571.10e23.
8.5x10^-3 moles x 6.02x10^23 molecules/mole = 5.1x10^-19 molecules
To find the number of moles, you first need to determine the molar quantity of iodine molecules based on Avogadro's number. Since 1 mole contains 6.022 x 10^23 molecules, you would divide 1.80 x 10^24 molecules by Avogadro's number to get the number of moles.
If you have 30 molecules of sodium reacting with aluminum chloride (AlCl3), they will produce 10 molecules of aluminum. This is because the balanced equation shows that 3 moles of sodium react with 1 mole of aluminum, producing 1 mole of aluminum.