1.5g/12.0107g = n,
n * 6.022*10^23 = 7.520793959e22
In this case n would equal .124888641
12.0107 is the grams in one mole of Carbon (Found in the Periodic Table -- Atomic Mass)
6.022*10^23 is avogadro's number or one mole.
85.9 (g C) = 85.9 (g C) / 12.00 (g/mol C) = 7.158 (mol C)7.158 (mol C)*[6.022*1023 (atoms/mol C)] = 4.31*1024 C-atoms
To find the number of carbon atoms in 12 g of carbon (C), you first need to calculate the number of moles of carbon (C) in 12 g using its molar mass. Then, you can use Avogadro's number (6.022 x 10^23) to determine the number of atoms in that many moles of carbon (C).
There are approximately 1.34 x 10^22 carbon atoms in 1.6 g of carbon. This calculation is based on the molar mass of carbon (12 g/mol) and Avogadro's number (6.022 x 10^23 atoms/mol). To find the number of atoms, divide the mass of the sample by the molar mass of carbon, and then multiply by Avogadro's number.
To calculate the total number of atoms in 15 g of CaH2, we first need to find the number of moles of CaH2 using its molar mass. The molar mass of CaH2 is 42.08 g/mol. Therefore, 15 g of CaH2 is equal to 15/42.08 = 0.356 moles of CaH2. Since each mole of CaH2 contains 3 atoms (1 calcium atom and 2 hydrogen atoms), there are 0.356 * 3 = 1.068 moles of atoms in 15 g of CaH2. This is equivalent to 1.068 * 6.022 x 10^23 = 6.44 x 10^23 atoms.
To find the number of moles of atoms in a compound, first calculate the molar mass of the compound (12 g/mol for carbon, 1 g/mol for hydrogen). Then divide the given number of atoms by Avogadro's number (6.022 x 10^23 atoms/mol) to find the number of moles. In this case, 5.21x10^24 atoms of C2H2 would be equivalent to approximately 8.65 moles.
169 g C x 1 mole C/12.011 g x 6.02x10^23 atoms/mole = 8.47x10^24 atoms
85.9 (g C) = 85.9 (g C) / 12.00 (g/mol C) = 7.158 (mol C)7.158 (mol C)*[6.022*1023 (atoms/mol C)] = 4.31*1024 C-atoms
The number of atoms is 28,099.10e23.
To find the number of carbon atoms in 12 g of carbon (C), you first need to calculate the number of moles of carbon (C) in 12 g using its molar mass. Then, you can use Avogadro's number (6.022 x 10^23) to determine the number of atoms in that many moles of carbon (C).
There are approximately 1.34 x 10^22 carbon atoms in 1.6 g of carbon. This calculation is based on the molar mass of carbon (12 g/mol) and Avogadro's number (6.022 x 10^23 atoms/mol). To find the number of atoms, divide the mass of the sample by the molar mass of carbon, and then multiply by Avogadro's number.
81.5 g at 15 °C in 100 g water 87.4 g at 20 °C in 100 g water 81.5 g at 15 °C in 100 g water 87.4 g at 20 °C in 100 g water
49.1740 g (6.02 x 1023 atoms) / (91.22 g) = 3.25 x 1023 atoms
To calculate the total number of atoms in 15 g of CaH2, we first need to find the number of moles of CaH2 using its molar mass. The molar mass of CaH2 is 42.08 g/mol. Therefore, 15 g of CaH2 is equal to 15/42.08 = 0.356 moles of CaH2. Since each mole of CaH2 contains 3 atoms (1 calcium atom and 2 hydrogen atoms), there are 0.356 * 3 = 1.068 moles of atoms in 15 g of CaH2. This is equivalent to 1.068 * 6.022 x 10^23 = 6.44 x 10^23 atoms.
To find the number of moles of atoms in a compound, first calculate the molar mass of the compound (12 g/mol for carbon, 1 g/mol for hydrogen). Then divide the given number of atoms by Avogadro's number (6.022 x 10^23 atoms/mol) to find the number of moles. In this case, 5.21x10^24 atoms of C2H2 would be equivalent to approximately 8.65 moles.
2pp
divide by the atomic mass and times it by advogadro's number.
atoms in 12 g of c-12