Best Answer

The mass of NaCl is 14,61 g.

Q: How many grams of NaCl are used to make up 1 liter of a .25M NaCl solution?

Write your answer...

Submit

Still have questions?

Continue Learning about Chemistry

0.5 M means 0.5 moles per liter. so it depends on how many liters of solution that you need.Suppose you want to make 1 liter of solution, then you need 0.5 moles of NaClFrom the webelements.com Periodic Table:Atomic mass of Sodium (Na) = 22.990 & Atomic Mass of Chlorine (Cl) = 35.453So 1 mole of NaCl = (22.990 + 35.453) grams = 58.443 gramsBased on the 1 liter, we want to add 0.5 moles: (58.443 grams/mole)*(0.5 mole) = 29.2215 g (to make 1 liter of 0.5 M solution)

200 milliliters

[117(g NaCl) / 58.5(g NaCl/mol NaCl)] / 40.0(L solution) = [117/58.5]/40.0 = 2.00(mol NaCl) / 40.0(L) = 0.0500 mol NaCl / L solution = 0.0500 M

Divide grams (mass) by molar mass to find moles58.44 (g NaCl/L) / [22.99+35.45](g NaCl/mol NaCl)= 1.000 mol/L NaCl

58 grams of NaCl in cylinder measure water to 100ml

Related questions

It depends how strong a solution you want to make. The molecular mass of NaCl is 58.44, so for a 1 molar solution you would dissolve 58.44 grams in water and make the volume up to 1 litre. For a 0.1 mol solution you'd take 5.844g to a litre, and a 2 mol solution you'd take 116.88g to a litre of water.

The Molecular Weight of NaCl = 58.5 So to make 1L of 4M NaCl solution you need 4*58.5=234g of NaCl So to make 100mL of the above solution you need 23.4 grams of NaCl

0.5 M means 0.5 moles per liter. so it depends on how many liters of solution that you need.Suppose you want to make 1 liter of solution, then you need 0.5 moles of NaClFrom the webelements.com Periodic Table:Atomic mass of Sodium (Na) = 22.990 & Atomic Mass of Chlorine (Cl) = 35.453So 1 mole of NaCl = (22.990 + 35.453) grams = 58.443 gramsBased on the 1 liter, we want to add 0.5 moles: (58.443 grams/mole)*(0.5 mole) = 29.2215 g (to make 1 liter of 0.5 M solution)

To make a 9 grams per liter solution of NaCl, simply dissolve 9 grams of NaCl in enough water to make a total volume of 1 liter. Stir or shake the solution until the NaCl is completely dissolved. Measure the volume accurately using a graduated cylinder or volumetric flask.

If your solution is a total of 414g and 3.06% of it needs to be NaCl, then you just take 414 x .0306 = grams of NaCl. The rest of the grams will be from other species in the solution.

200 milliliters

Molar mass of NaCl =~58.4 g/mole0.1 N NaCl = 0.1 moles/liter To make 1 liter of 0.1N NaCl thus requires 0.1 moles/liter = 0.1 moles x 58.4 g/mole = 5.84 moles Dissolve 5.84 g (6 g using 1 sig. fig.) in a final volume of 1 liter to make 0.1N NaCl

You need 841,536 g NaCl.

What volume of this solution do you desire? Let's say you want to make 1 liter of such a solution. You would weigh out 1 gram (1000 mg) of NaCl and dissolve it in enough water to make a final volume of 1 liter (1000 ml). Since 1000 ppm means 1000 mg/liter, this is how you make 1 liter of that solution. For larger or smaller volumes, adjust appropriately.

Molarity = moles of solute/volume of solution Find moles NaCl 55 grams NaCl (1mol NaCl/58.44 grams) = 0.941 moles NaCl Molarity = 0.941 moles NaCl/35 Liters = 0.027 Molarity NaCl ( sounds reasonable as 55 grams is not much in 35 Liters of water, which would be about 17.5 2 liter sodas )

It depends on the final solution Volume you want to prepare. For 100ml of a 6M NaCL solution, you add 35.1g of NaCl to water until you reach 100ml. Dissolve and autoclave for 15 mins.

[117(g NaCl) / 58.5(g NaCl/mol NaCl)] / 40.0(L solution) = [117/58.5]/40.0 = 2.00(mol NaCl) / 40.0(L) = 0.0500 mol NaCl / L solution = 0.0500 M