no
If the reaction is stoichiometric, 1.30 moles of zinc will generate an equal number of moles of silver. This is based on the balanced chemical equation for the reaction between zinc and silver nitrate.
First, calculate the moles of silver nitrate in the solution using Molarity = moles/volume. Then, use the balanced chemical equation between silver nitrate and silver chloride to determine the moles of silver chloride that can be produced. Finally, convert the moles of silver chloride to grams using the molar mass of silver chloride.
The number of moles of silver chromate formed will depend on the stoichiometry of the reaction between silver nitrate and potassium chromate. You need to know the balanced chemical equation, as well as the exact volumes and concentrations of the silver nitrate and potassium chromate solutions to calculate the number of moles of silver chromate formed.
1 mole of silver nitrate produces 1 mole of silver when it reacts to completion. Therefore, 7 moles of silver nitrate will produce 7 moles of silver.
To find the number of moles in 2.8881015 formula units of silver nitrate, you first need to know the molar mass of silver nitrate (AgNO3), which is 169.87 g/mol. Then, you can use the formula: moles = formula units / Avogadro's number. Therefore, moles = 2.8881015 / 6.022 x 10^23 = 4.79 x 10^-24 moles.
If the reaction is stoichiometric, 1.30 moles of zinc will generate an equal number of moles of silver. This is based on the balanced chemical equation for the reaction between zinc and silver nitrate.
First, calculate the moles of silver nitrate in the solution using Molarity = moles/volume. Then, use the balanced chemical equation between silver nitrate and silver chloride to determine the moles of silver chloride that can be produced. Finally, convert the moles of silver chloride to grams using the molar mass of silver chloride.
To completely replace silver in the solution with copper, you would need an equal number of moles of copper to the moles of silver present. Calculate the moles of silver in the solution using the concentration and volume given. Then use the mole ratio between copper and silver to determine the moles of copper needed, and convert this to grams.
The number of moles of silver chromate formed will depend on the stoichiometry of the reaction between silver nitrate and potassium chromate. You need to know the balanced chemical equation, as well as the exact volumes and concentrations of the silver nitrate and potassium chromate solutions to calculate the number of moles of silver chromate formed.
1 mole of silver nitrate produces 1 mole of silver when it reacts to completion. Therefore, 7 moles of silver nitrate will produce 7 moles of silver.
To find the number of moles in 2.8881015 formula units of silver nitrate, you first need to know the molar mass of silver nitrate (AgNO3), which is 169.87 g/mol. Then, you can use the formula: moles = formula units / Avogadro's number. Therefore, moles = 2.8881015 / 6.022 x 10^23 = 4.79 x 10^-24 moles.
Since silver chromate has a 1:1 molar ratio with silver nitrate, 4 moles of silver nitrate will produce 4 moles of silver chromate.
Since both chloride anions and nitrate anions have a charge of -1, there will be the same number of moles of silver chloride produced as the moles of silver nitrate reacted. (Since both silver nitrate and silver chloride are ionic compounds, it would be preferable to call their "moles" "formula units" instead.)
To find the limiting reactant, calculate the moles of silver nitrate and potassium chromate. Convert the limiting reactant to moles of silver chromate using the balanced chemical equation. Here, 2 moles of silver nitrate react with 1 mole of potassium chromate to form 2 moles of silver chromate. Calculate the moles of silver chromate that can be formed based on the limiting reactant.
To find the number of moles, divide the number of molecules by Avogadro's number (6.022 x 10^23 molecules/mol). In this case, 2.0 x 10^25 molecules of silver nitrate is equal to 33.2 moles (2.0 x 10^25 / 6.022 x 10^23).
To find the mass of silver chloride produced, first calculate the moles of silver nitrate using Molarity = moles/volume. Then, use the mole ratio from the balanced chemical equation to find the moles of silver chloride produced. Finally, multiply the moles of silver chloride by its molar mass to find the mass of silver chloride produced.
1 mole of silver nitrate produces 1 mole of silver chloride in a 1:1 ratio according to the balanced chemical equation AgNO3 + NaCl -> AgCl + NaNO3. Therefore, 7 moles of silver nitrate will produce 7 moles of silver chloride.