What atom? Need Z (atomic ) number.
When an electron drops from level 5 to level 1, a photon is emitted in the ultraviolet region of the electromagnetic spectrum. The energy released corresponds to the energy difference between the two electron levels, which is characteristic of ultraviolet light.
Lots of wrong answers out there, tested this on school, the answer is: Drops from a higher to a lower energy level
No, when an electron drops from a higher energy level to a lower energy level within an atom, the energy released in the form of a photon is given off by the electron itself, not taken from the environment. This process is known as emission.
When an atom emits light, an electron in the atom transitions from a higher energy state to a lower energy state. This transition releases energy in the form of a photon of light. The atom remains the same element before and after emitting light.
The energy of the photon is the same as the energy lost by the electron
When an electron drops from a higher energy state to a lower energy state, it emits electromagnetic radiation in the form of a photon. This process is known as atomic emission, and the energy of the emitted photon corresponds to the energy difference between the two electron states.
When an electron drops from level 5 to level 1, a photon is emitted in the ultraviolet region of the electromagnetic spectrum. The energy released corresponds to the energy difference between the two electron levels, which is characteristic of ultraviolet light.
Light is emitted when an electron drops from the orbit of an excited state, into its natural state. The quantum of light emitted is characteristic of the change in energy of the two electron states, and also of the actual element involved.
The energy of the photon is the same as the energy lost by the electron
Lots of wrong answers out there, tested this on school, the answer is: Drops from a higher to a lower energy level
No, when an electron drops from a higher energy level to a lower energy level within an atom, the energy released in the form of a photon is given off by the electron itself, not taken from the environment. This process is known as emission.
When 10 electrons drop from the fifth to the second energy level, energy in the form of photons is emitted. The energy of the emitted photon is equal to the difference in energy levels between the initial and final states of the electrons. This process is known as photon emission or de-excitation.
That’s correct. Spectral lines are produced when electrons in atoms move between energy levels. When an electron drops to a lower energy level, it emits a photon of a specific energy corresponding to a specific wavelength of light, creating spectral lines in the emitted light spectrum.
A photon may be both a particle and a wave (light). Photons are normally emitted when an electron loses energy either by bending its path or by falling from a higher orbital state to a lower orbital state. Very high energy photons called gamma ray can also be formed from a positron and and electron merging.
When an electron is moved to a higher energy level,after absorption, the quantum no longer exists as a separate entity -- its energy has been seamlessly integrated ...into the orbital energy of the electron. If the electon absorbs another quantum, that is likewise integrated seamlessly. if the electron drops down a level toward the nucleus, it emits some of its energy as a quantum, outside the electron, that quantum exists as a photon (electromagnetic radiation). inside an electron, there are no separate or independent quanta. in case of an annihilation, ALL the energy of the electron turns into one quantum (and all the energy of the positron into another quantum).If i didn't do a good job of explaining this, please post in the DiscBrd AND send me a private message, and i will try to clarify.
These colors are generated by excited electrons relaxing back to lower energy levels. Each element has unique energy levels permitted to electrons by quantum mechanics. As an electron drops to a lower level a photon is emitted, carrying away the difference in energy and the higher the energy the shorter its wavelength.
When an atom emits light, an electron in the atom transitions from a higher energy state to a lower energy state. This transition releases energy in the form of a photon of light. The atom remains the same element before and after emitting light.