answersLogoWhite

0

Inward movement of sodium ions will increase and the membrane will depolarize

User Avatar

Wiki User

12y ago

What else can I help you with?

Continue Learning about Chemistry

How do sodium ions move during resting potential?

During resting potential, sodium ions are actively pumped out of the cell by the sodium-potassium pump to maintain the concentration gradient. This helps to establish a more positive charge outside the cell, contributing to the negative resting membrane potential inside the cell. Sodium channels are closed during resting potential, preventing sodium ions from moving back into the cell.


What happens when sodium is pumped out of the cell by the sodium potassium pump?

When sodium is pumped out of the cell by the sodium-potassium pump, it helps maintain the cell's resting membrane potential by generating an electrochemical gradient. This process also helps regulate cell volume and is essential for proper nerve and muscle function.


What would a substance that decreases membrane premeability to sodium increase or decrease the probability of generating a nerve impulse?

A substance that decreases membrane permeability to sodium would decrease the probability of generating a nerve impulse. This is because sodium ions play a critical role in the depolarization phase of an action potential by entering the cell, so if their permeability is reduced, it hinders the ability to reach the threshold for generating an impulse.


Would a substance that decreases membrane permeability to sodium increase or decrease the generating of a nerve impulse?

A substance that decreases membrane permeability to sodium would decrease the generation of a nerve impulse. This is because sodium ions play a crucial role in depolarizing the membrane and initiating nerve impulses. By reducing sodium influx into the cell, the ability of the neuron to generate an action potential would be diminished.


Why do you store sodium chloride in colored bottles?

Sodium chloride is stored in colored bottles to protect it from exposure to light, which can cause degradation or changes in the composition of the compound. Colored bottles help to block out light and maintain the stability of the sodium chloride.

Related Questions

What happens if the permeability of a resting axon to sodium ion increases?

If the permeability of a resting axon to sodium ion increases, it would lead to depolarization of the neuron. This would cause sodium ions to enter the cell, making the inside more positive and potentially triggering an action potential.


Why resting membrane potential value sodium is closer to equilibrium of potassium?

The resting membrane potential value for sodium is closer to the equilibrium of potassium because the sodium-potassium pump actively maintains a higher concentration of potassium inside the cell and a higher concentration of sodium outside the cell. This leads to a higher permeability of potassium ions at rest, resulting in the resting membrane potential being closer to the equilibrium potential of potassium.


Is the action potential caused by permeability changes in the plasms membrane?

Yes, the action potential is primarily caused by changes in the permeability of the plasma membrane. When a neuron is stimulated, voltage-gated sodium channels open, leading to an influx of sodium ions that depolarizes the membrane. This is followed by the opening of potassium channels, allowing potassium ions to exit the cell, which repolarizes the membrane. These permeability changes create the rapid rise and fall in membrane potential characteristic of an action potential.


What happens to the net concentration of sodium ions during the resting membrane potential?

During the resting membrane potential, the net concentration of sodium ions remains constant. The Na+/K+ pump works to actively transport sodium out of the cell and potassium into the cell, maintaining the resting membrane potential.


Explain why a change in extracellular sodium did not alter the membrane potential in the resting neuron?

A change in extracellular sodium concentration would not alter the resting membrane potential of a neuron because the resting potential is primarily determined by the relative concentrations of sodium and potassium ions inside and outside the cell, as mediated by the sodium-potassium pump and leak channels. Changes in extracellular sodium concentration would not directly affect this equilibrium.


Why the resting membrane potential of erythrocyte is more negative?

The resting membrane potential of erythrocytes is more negative due to the higher permeability of the plasma membrane to potassium ions compared to sodium ions. Potassium ions have a negative resting potential, so when they move out of the cell more readily than sodium ions move in, it results in a more negative membrane potential. This is important for maintaining the cell's shape and functions.


Why Is a resting neuron more permeable to potassium than sodium?

A resting neuron is more permeable to potassium than sodium primarily due to the presence of more potassium channels that are open at rest, allowing potassium ions to move freely across the membrane. Additionally, the resting membrane potential is closer to the equilibrium potential for potassium, which is around -90 mV, compared to sodium, which is around +60 mV. This difference in permeability is crucial for maintaining the negative resting membrane potential, as potassium ions tend to flow out of the cell, making the interior more negative relative to the outside.


How does the membrane potential affect the permeability of a neuron s cell membrane?

The membrane potential of a neuron influences its permeability by affecting the opening and closing of ion channels. When the membrane potential becomes more positive (depolarization), voltage-gated sodium channels open, increasing permeability to sodium ions and leading to an action potential. Conversely, during repolarization, potassium channels open, allowing potassium ions to flow out, which decreases permeability to sodium. Thus, changes in membrane potential directly regulate ion flow and, consequently, the neuron's excitability.


A resting potential is caused by a difference in the concentration of certain ions inside and outside the cell?

The resting potential of a cell is primarily created by the unequal distribution of ions across the cell membrane, with more sodium ions outside and more potassium ions inside. This creates an electrical gradient known as the resting membrane potential, typically around -70mV in neurons. The selective permeability of the cell membrane to ions and the actions of the sodium-potassium pump play a key role in maintaining the resting potential.


When a stimulus acts on a neuron it decreases the permeability of the stimulated point of its membrane to sodium ions?

False( When a stimulus acts on a neuron, it increases the permeability of the stimulated point of its membrane to sodium ions. )


What is active potential related to in permeability of membrane?

Active potential, often referred to as action potential, is a rapid change in the membrane potential of a neuron or muscle cell that occurs when the membrane becomes permeable to ions, primarily sodium (Na+) and potassium (K+). During the depolarization phase of the action potential, the membrane's permeability to Na+ increases, allowing these ions to flow into the cell, which causes a rapid rise in membrane potential. This is followed by repolarization, where the permeability to K+ increases, allowing K+ to exit the cell, restoring the membrane potential to its resting state. Thus, active potential is closely linked to the dynamic changes in ion permeability of the membrane.


Drugs that decrease membrane permeability to sodium are used as what?

Drugs that decrease membrane permeability to sodium are used as local anesthetics. These drugs block the sodium channels and prevent NA+ from entering the cell. NA+ influx is important to dipolarize the membrane.