2AgI+2NH3 give you 2AgNH3 + I2.
Reaction only occurs when ammonia (NH3) is added in excess.
The reaction between silver nitrate and potassium iodide forms silver iodide precipitate and potassium nitrate. This reaction is a double displacement reaction where the silver ions from silver nitrate switch places with the potassium ions in potassium iodide.
The equation for the reaction between ammonia and silver nitrate is: 2NH3 + AgNO3 → AgNH3 + NO3
When silver nitrate reacts with potassium iodide, a precipitation reaction occurs where silver iodide is formed. The balanced chemical equation for this reaction is: AgNO3 + KI -> AgI + KNO3. The silver iodide formed will appear as a yellow solid precipitate.
When iodide is mixed with silver nitrate, a yellow precipitate of silver iodide is formed due to a double displacement reaction. This reaction can be represented by the chemical equation: 2AgNO3 + 2KI → 2AgI + 2KNO3.
AgNO3(aq) + KI(aq) = KNO3(aq) + AgI(s) This is a classic test for halogens, and AgI precipitates down as a yellow solid.
The reaction between silver nitrate and potassium iodide forms silver iodide precipitate and potassium nitrate. This reaction is a double displacement reaction where the silver ions from silver nitrate switch places with the potassium ions in potassium iodide.
Silver chloride appears white, while silver iodide appears yellow. You can further distinguish between the two by adding ammonia solution - silver chloride will dissolve in ammonia, forming a colorless solution, while silver iodide remains unaffected.
A yellow precipitate of silver iodide is formed due to the reaction between potassium iodide and silver nitrate, as silver iodide is insoluble. The reaction can be described by the equation: 2KI (aq) + AgNO3 (aq) → AgI (s) + 2KNO3 (aq)
This is a precipitation reaction. Halides of silver are insoluble in water (except silver fluoride) whereas all nitrates are soluble in water. Sodium salts are soluble. Thus, silver iodide is the precipitate. Formula: AgNO3(aq) + NaI(aq) -> AgI(s) + NaNO3(aq)
Ammonium iodide is NH4I Silver nitrate is AgNO3
There is no reaction, because silver iodide is very insoluble.
The equation for the reaction between ammonia and silver nitrate is: 2NH3 + AgNO3 → AgNH3 + NO3
A white precipitate of silver iodide forms due to the reaction between silver ions and iodide ions, leaving potassium nitrate in solution. This reaction is a double displacement reaction and is used as a test for iodide ions.
When silver nitrate reacts with potassium iodide, a precipitation reaction occurs where silver iodide is formed. The balanced chemical equation for this reaction is: AgNO3 + KI -> AgI + KNO3. The silver iodide formed will appear as a yellow solid precipitate.
The evidence that a chemical reaction occurred in the reaction between silver nitrate and potassium iodide is the formation of a yellow precipitate of silver iodide. This precipitate forms due to the exchange of ions between the two reactants, resulting in the creation of a new compound with different chemical properties than the original substances.
When sodium iodide reacts with silver nitrate, a double displacement reaction occurs. The sodium ions exchange with the silver ions, forming silver iodide as a white precipitate and sodium nitrate. This reaction can be represented by the equation: 2NaI + 2AgNO3 → 2AgI + 2NaNO3
Silver nitrate solution and potassium iodide solution can be mixed to form silver iodide due to a double displacement reaction where the silver ions from silver nitrate react with the iodide ions from potassium iodide to form insoluble silver iodide precipitate. The balanced chemical equation for this reaction is: AgNO3 (aq) + KI (aq) → AgI (s) + KNO3 (aq).