Sulphur.
Please see the link.
Electron affinity of chlorine is far grater than oxygen. For oxygen, its value is 141 KJ/mole whereas for Chlorine, it is 349 KJ/mole. Thus, adding an electron is more favourable in case of a gaseous chlorine atom
Both oxygen and sulfur have the same number of electron shells, which is two.
Fluorine has a lower electron affinity than oxygen. This is because fluorine already has a full outer shell of electrons and adding another electron would create repulsion due to electron-electron interactions. Oxygen, on the other hand, has space in its outer shell to accept an additional electron more easily.
Yes. It's true. Chlorine has the highest electron affinity, then Fluorine, Bromine and Iodine
Bromine (Br) has a more negative electron affinity than boron (B). This means that bromine has a higher tendency to accept an electron to form a negative ion.
No, sulfur has a higher electron affinity than oxygen. Electron affinity is the energy released when an atom gains an electron to form a negative ion, and sulfur's larger size and higher effective nuclear charge make it more likely to attract an additional electron compared to oxygen.
Electron affinity of chlorine is far grater than oxygen. For oxygen, its value is 141 KJ/mole whereas for Chlorine, it is 349 KJ/mole. Thus, adding an electron is more favourable in case of a gaseous chlorine atom
Both oxygen and sulfur have the same number of electron shells, which is two.
Fluorine has a lower electron affinity than oxygen. This is because fluorine already has a full outer shell of electrons and adding another electron would create repulsion due to electron-electron interactions. Oxygen, on the other hand, has space in its outer shell to accept an additional electron more easily.
Yes. It's true. Chlorine has the highest electron affinity, then Fluorine, Bromine and Iodine
The energy change that occurs when an electron is added to a neutral atom. This is usually exothermic. Noble Gases are excluded from this. Equation: X(element)+e-(electron)---------> X-1+ energy
Bromine (Br) has a more negative electron affinity than boron (B). This means that bromine has a higher tendency to accept an electron to form a negative ion.
Type your answer here... when adding an electrons to oxygen it needs more energy in electron affinity in order to attract electrons from other atoms to be stable.and we know that oxygen is in short of two electrons.so in the other hand when an electron is removed from oxygen it will be unstable and will be needing more ionization energy to be able to remove an electron to it.Thus mean indeed when adding or removing electrons for oxygen it requires energy.
Electron affinity is the amount of energy required to remove an electron from an atom. Or an energy released by adding an electron to a gaseous atom ( ie, negative quantity). In this case, if an element has a negative Electron Affinity, its indicating that this element is stable than the neutral ones.
Down the group electron affinity decreases Across a period electron affinity increases. However, it should be noted that chlorine is having higher electron affinity than flourine due to the small size of fluorine atom)
Nonmetals with lower electron affinity tend to have higher reactivity because they are more likely to gain electrons to achieve a stable electron configuration. This makes them more reactive in chemical reactions as they can readily form bonds with other elements.
when adding two electrons to the oxygen atom yep! it requires more energy because it has to take them from another atom so it will be removing an electron using more ionization energy to do the work.and we must remember that oxygen needs two electrons to attain its valency then it needs to take two from another atom to be fully filled and without the two electrons it will still lack electron to be stable.this means adding or removing requires energy.