Since aniline N has a lone pair of electrons to dislocate in aromatic system (PI), it has less donating stability then ammonia.
Don
Because the electron withdrawing resonance efect caused by the nitro group on the structure, it makes the electrons pair on the nitrogen less available, if the electron pair is less available it's less basic
Strength of bases is related to the ease of accepting a proton which inturn depends on the availability of electron pair on the nitrogen atom (or some other basic atom). More is the availability of electron pair, more easily the proton will be accepted and more will be the basic strength.Aniline is a weaker base than ammonia or cyclohexylamine. It is because of the fact that the electron pair on nitrogen is involved in delocalization, making it less available for donation.
Ammonia is a stronger base than aniline because the lone pair on the nitrogen in ammonia is more readily available for donation compared to the nitrogen in aniline, which is partially delocalized due to resonance. As a result, ammonia is able to more effectively accept a proton to form its conjugate acid, making it a stronger base.
Aniline is a weaker base than ammonia because the lone pair on the nitrogen atom in aniline is partially delocalized into the benzene ring, making it less available for donation to form a bond with a proton. In contrast, the lone pair on the nitrogen atom in ammonia is more readily available for donation, resulting in a stronger basicity.
aniline is more acidic because in aniline a electron withdrawing benzene is connected.electron withdrawing capacity of benzene is due to its delocalizing pi electrons cloud.due the action of benzene the presence of unshared pair of electron over nitrogen is somehow decreases.which increases its acidic nature. But in case of ammonia there is no electron withdrawing group.so its unshared pair of electron remains undistrubed,which decreases its acidity and increases its basisity
Because the electron withdrawing resonance efect caused by the nitro group on the structure, it makes the electrons pair on the nitrogen less available, if the electron pair is less available it's less basic
Strength of bases is related to the ease of accepting a proton which inturn depends on the availability of electron pair on the nitrogen atom (or some other basic atom). More is the availability of electron pair, more easily the proton will be accepted and more will be the basic strength.Aniline is a weaker base than ammonia or cyclohexylamine. It is because of the fact that the electron pair on nitrogen is involved in delocalization, making it less available for donation.
Ammonia is a stronger base than aniline because the lone pair on the nitrogen in ammonia is more readily available for donation compared to the nitrogen in aniline, which is partially delocalized due to resonance. As a result, ammonia is able to more effectively accept a proton to form its conjugate acid, making it a stronger base.
Aniline is a weaker base than ammonia because the lone pair on the nitrogen atom in aniline is partially delocalized into the benzene ring, making it less available for donation to form a bond with a proton. In contrast, the lone pair on the nitrogen atom in ammonia is more readily available for donation, resulting in a stronger basicity.
Because the lone pair of electron of nitrogen in case of Aniline becomes involve in resonance process of aromatic ring and is less available for the attack of an acid.
Alkyl groups are slightly electron donating. The methyl groups on the amine in N,N dimethylaniline contribute electron density to the nitrogen lone pair, making it more likely to reach out and grab a proton (ie more basic).
aniline is more acidic because in aniline a electron withdrawing benzene is connected.electron withdrawing capacity of benzene is due to its delocalizing pi electrons cloud.due the action of benzene the presence of unshared pair of electron over nitrogen is somehow decreases.which increases its acidic nature. But in case of ammonia there is no electron withdrawing group.so its unshared pair of electron remains undistrubed,which decreases its acidity and increases its basisity
Among the compounds listed, aniline is the most basic as it has a lone pair on the nitrogen atom that can readily accept a proton. Benzylamine and p-nitroaniline are less basic due to the presence of electron-withdrawing groups, while acetanilide has a resonance-stabilized amide group that reduces its basicity.
In o-aniline phenol Intramolecular hydrogen bonding occurs which is not possible in meta and is responsible for less solubility
Because in Benzylamine : the unshared lone pair of electron on nitrogen atom isavailable >.. But in n-ethyl aniline: the unshared lone pair of electron is not available and enter resonance with benzene ring .(Villa)
Ammonia is less basic than ethylamine because the lone pair of electrons on the nitrogen atom in ammonia is delocalized in the sp3 orbital, making it less available for donation. In contrast, in ethylamine, the lone pair is in an sp3 orbital on nitrogen, making it more available for donation, resulting in higher basicity.
Aniline is more basic than p-nitroaniline because the presence of a nitro group (-NO2) in p-nitroaniline decreases its basicity by withdrawing electron density from the amino group. Aniline, on the other hand, lacks this electron-withdrawing group, making it more basic.