How electrophoresis works is that it combines the polarity and the size of the molecule by showing how much that certain molecule moves. With DNA scientists use restriction enzymes which cut a piece of DNA out of the DNA strand using a protein that looks for a certain sequence of nucleotides (called a restriction site). DNA is not the same for everyone so the space between restriction sites can be larger or smaller. How electrophoresis works is the smaller molecules move farther down the agarose gel and the larger molecules don't. All proteins are very large and don't differ as much in size as the DNA cut by the restriction enzymes, which does not show the different lines you would see in DNA electrophoresis.
The reason the DNA moves down is because it is negatively charged. So the anode (positive end) is placed at the bottom which attracts the DNA. But the spaces in the agarose gel stop larger DNA and let smaller pieces go farther. Proteins on the other hand do not have as clean of a charge as the DNA, which makes the attraction from the cathode less strong. Also proteins are easily denatured in the agarose gel which makes the process have no point what so ever.
During electrophoresis, smaller pieces of DNA will migrate to the bottom of the gel first.
Ethidium bromide interchalates with DNA. It doesn't affect electrophoresis, but it help visualise the DNA bands after electrophoresis. The EtBr that is bound to the DNA will fluoresce under ultraviolet light.
To measure migration distance in gel electrophoresis, you can use a ruler or a specialized software to measure the distance the DNA or protein bands have traveled from the starting point in the gel. This distance is typically measured in millimeters or centimeters.
To read a gel electrophoresis, first identify the DNA bands by their size and position on the gel. Compare the bands to a DNA ladder for reference. The smaller DNA fragments will move further on the gel than larger fragments. Use a UV light or stain to visualize the bands.
In gel electrophoresis, DNA moves through the gel matrix from the negative electrode to the positive electrode.
Let's put it this way, we know that electrophoresis is a test for the sizes of the fragments of DNA molecules while SDS-page is a test of the size of protein molecules. If you use electrophoresis to test the differences of protein, there will not be any bands as all the protein will travel to the end of SDS-page. Therefore, we can conclude that the pores of electrophoresis is much more larger than SDS-page. Since electrophoresis has larger pores than SDS-page, it also shows that overall DNA is larger than protein in size.
Horizantal gel electrophoresis is generally used for RNA/DNA based studies, while vertical gel electrophoresis is used for protein based studies.
Gel electrophoresis is not typically used for determining the function of proteins or for studying protein-protein interactions. It is primarily used to separate and analyze DNA, RNA, or proteins based on their size and charge.
There are many similarities and differences between protein and DNA electrophoresis.Similarities:PAGE protein and DNA electrophoresis both cause separation by size, creating bands that are viewed by the scientist or a machine. The smallest segments more the fastest due to less friction with the surface of their medium or equipment.The movement of charges through the medium is what causes the DNA or proteins to move. Electrons move from the negative to positive end of the gel or capillary tube.Differences:In PAGE protein electrophoresis, a polyacrylamide gel is used to prevent convection from altering the movement of the proteins. If the proteins are charged, and there is a worry that the charge will affect the mobility of the protein segments, 1% SDS can be added to get rid of the mass/charge issue. This way, only the mass of the segment determines how far it moves. In DNA capillary electrophoresis, the size of the capillary is so small that it does not have room for convection to occur (it is only 20-50 microns wide). Thus, there is no medium in the capillary but DNA itself.In protein electrophoresis, the proteins are often dyed so their movement can be viewed with the naked eye, or a machine. With DNA capillary electrophoresis, DNA strands are made through DNA replication with dNTPs that are fluorescently labeled for the different nucleotides. Each base is labeled a different color. A fine laser lights up the DNA strand in the capillary tube and reads what color fluoresces. This is how the nucleotide is identified.Protein PAGE electrophoresis is used to determine the purity of a protein sample. It can also be used to see how large the chains are that make up a multi-chain protein if a denaturing agent is added. DNA electrophoresis is used to get the order of nucleotides in a DNA sequence. It is done by chopping the DNA sequence into many smaller bits and sequencing them, then putting them back together by lining them up according to sequence overlaps. This is called the "shotgun" method. Protein electrophoresis can figure out the order of about 15-20 amino acids by a similar method, but DNA electrophoresis can get up to 1000 nucleotides (~300 amino acids). DNA electrophoresis is limited by the low probability that the DNA sequence would be cut into a segment greater than 1000 nucleotides.
Electrophoresis technique is not designed to cut DNA molecule. When DNA is analyzed by electrophoresis to determine its molecular mass, the molecular biology engineer usualy digests the DNA molecule, before the electrophoresis, with specific enzymes called "restriction enzymes" in order to obtain fragments of diverse molecular weights that can be seen as bands in electrophoresis gels.
Electrophoresis is used to separate molecules based on size and charge. Since biotechnology depends on knowing what you are working with, electrophoresis of proteins, DNA and RNA is a tool used by biotechnologists.
During electrophoresis, smaller pieces of DNA will migrate to the bottom of the gel first.
electrophoresis,PCR
Gel electrophoresis
One of the Conclusion of electrophoresis is Visualization of the DNA size. Second is Sequencing the length of DNA of the body.
Agarose gel electrophoresis is suitable for ALL DNA.
EMSA does not measure if protein bends to DNA. It does measure what proteins bind to a specific region of DNA (usually a promoter region). You can use a supershift to determine exactly what protein is binding to the specific DNA region.