The ethoxide ion is a thousands times MORE stable than the phenoxide ion. This is because the carbonyl oxygen atom is very electronegative and pulls the electron in the double bond towards it creating a polar bond between C=O and the electron cloud consequently shifts to the O atom in the double bond. The shift creates a resonance structure which delocalises the charge between the 3 atoms (the electron cloud now moves from one O atom to the nextthrough the overlapping pi-bonds). This Cloud shift weakens the O-H bond, making it easier for the H atom to ionise and delocalises the electrons making the structure more stable.
Phenols are more acidic than alcohols due to the resonance stabilization of the phenoxide ion formed upon deprotonation. This stability lowers the energy of the phenoxide ion, making it easier for phenols to donate a proton. However, carboxylic acids are more acidic than phenols because the carboxylate ion is stabilized by two electronegative oxygen atoms and resonance delocalization, resulting in further stabilization compared to the phenoxide ion.
Phenol is a stronger acid than ethanol because the phenoxide ion formed after losing a proton is stabilized by resonance, making it more stable. In contrast, ethanol forms a less stable ethoxide ion due to the lack of resonance stabilization. This difference in stability influences the ease with which the acids donate a proton.
Phenol is more acidic than aliphatic alcohols and water because the benzene ring stabilizes the phenoxide ion formed upon deprotonation, making it more favorable to lose a proton. This stabilization is due to resonance delocalization of the negative charge in the phenoxide ion. In aliphatic alcohols and water, there is no such resonance stabilization, resulting in weaker acidity.
Phenol can act as an acid due to it's stability as phenoxide ion. By releasing H+ ion it will form stable C6H5O- ion. The groups having +I, -I , +M , -M efffects present on phenol will effect acidic nature of phenol. As +I or +M groups which are present at ortho and at para psitions will decrease the acidic character of phenol. If they are at meta position effect is less than at para or ortho positions.Similar to this -I or -M gorups are substituted on phenol they will increase the acidic nature. so, we can say that as the stability of phenoxide ion increases acidic nature of phenol also increases.Phenol can act as an acid due to it's stability as phenoxide ion. By releasing H+ ion it will form stable C6H5O- ion. The groups having +I, -I , +M , -M efffects present on phenol will effect acidic nature of phenol. As +I or +M groups which are present at ortho and at para psitions will decrease the acidic character of phenol. If they are at meta position effect is less than at para or ortho positions.Similar to this -I or -M gorups are substituted on phenol they will increase the acidic nature. so, we can say that as the stability of phenoxide ion increases acidic nature of phenol also increases.Phenol is a weak acid because of the presence of the hydrogen ions.
Phenol is more reactive than anisole because the hydroxyl group in phenol is a stronger activating group compared to the methoxy group in anisole. The resonance stabilization of the phenoxide ion formed during reactions further enhances its reactivity. In contrast, anisole's methoxy group is a weaker activating group and does not stabilize the negative charge as effectively.
The phenoxide ion is more reactive than phenol towards electrophilic substitution reactions because the phenoxide ion is a stronger nucleophile due to the negative charge on oxygen. This makes it more effective in attacking electrophiles in substitution reactions. Additionally, the negative charge on the phenoxide ion stabilizes the transition state, lowering the activation energy for the reaction to occur.
Sodium phenoxide ion is more soluble in water than phenol. This is because sodium phenoxide ion is an ionic compound, which dissociates into ions in water and forms interactions with water molecules, increasing its solubility compared to the non-ionic phenol molecule.
Phenols are more acidic than alcohols due to the resonance stabilization of the phenoxide ion formed upon deprotonation. This stability lowers the energy of the phenoxide ion, making it easier for phenols to donate a proton. However, carboxylic acids are more acidic than phenols because the carboxylate ion is stabilized by two electronegative oxygen atoms and resonance delocalization, resulting in further stabilization compared to the phenoxide ion.
Phenol is a stronger acid than ethanol because the phenoxide ion formed after losing a proton is stabilized by resonance, making it more stable. In contrast, ethanol forms a less stable ethoxide ion due to the lack of resonance stabilization. This difference in stability influences the ease with which the acids donate a proton.
Phenol is more acidic than aliphatic alcohols and water because the benzene ring stabilizes the phenoxide ion formed upon deprotonation, making it more favorable to lose a proton. This stabilization is due to resonance delocalization of the negative charge in the phenoxide ion. In aliphatic alcohols and water, there is no such resonance stabilization, resulting in weaker acidity.
Not all isotopes are unstable. But now more than 3 000 unstable isotopes are known, artificial or natural.
Phenol is more stable in sodium hydroxide than in water because in a basic solution, the phenoxide ion is formed which delocalizes the negative charge onto the oxygen atom, making the molecule more stable. This delocalization is not as effective in water, where the negative charge is localized on the oxygen atom.
They are holding more solute than can normally be dissolved.
phenol is more acidic because of the benzene ring present in the molecule,when you lose the H form the OH group it is possible to delocalise the charge around the aromatic system due to the pi electron cloud,straight chain alcohols cannot do this so it is less favourable to deprotonate them hance it is easier to deprotonate a phenol,hence we say it is more acidic
Uranium has an atomic weight greater than iron and is more unstable.
false
Atoms that are unstable are more likely to be radioactive than atoms that are stable. This means they can emit radiation in the form of alpha or beta particles, or gamma rays, in order to reach a more stable state.