There is no easy answer to this question. First, it depends what information you have to start with. Do you have the name? Do you know what elements are found in the substance?
If you are given the name of the molecule, you can often find the molecular structure of that compound by simply using the Google search engine online and searching for the name. It is often give you the answer! There are certain compounds that you should be familiar with also. Also, there is a set of official rules that determine the name of a specific compound, so that if you have the formula, you can name it correctly, and if you have the name, you can determine the formula. Unfortunately, many chemicals also have common names that do not follow these rules, and you just have to memorize those, or look them up with Google.
See the Related Questions and Web Links to the left for some information about how compounds are named and how to go from a formula to a name and vice versa.
To find the molecular formula, you first need to calculate the empirical formula mass of C3H4. C3H4 has an empirical formula weight of 40 g/mol. If the molecular weight is 120 g/mol, then the molecular formula would be 3 times the empirical formula, so the molecular formula would be C9H12.
No, none of the given formulas are consistent with empirical formulas because they do not represent the simplest whole-number ratio of elements in a compound. The empirical formula shows the relative number of each type of atom in a compound and is reduced to its simplest form.
No. A molecular formula can be the same as the empirical formula, such as CH4 (methane), because the two component atoms exist in a ratio that cannot be mathematically further broken down - one carbon to four hydrogens. In this case the molecular formula (the actual number of atoms per molecule), and the empirical formula (the simplest ratio of those numbers) is identical. On the other hand, ethane, C2H6 - two carbons to 6 hydrogens - has a molecular formula of C2H6 and a empirical formula of CH3, the ratio of 2 to 6 reduced to its simplest whole number form. Sooooooooooo, the molecular formula will always be equal to or greater than the empirical formula, and the empirical formula will always be equal to or less than the molecular formula. In other words (as if that wasn't enough), the molecular formula will never be less than the empirical formula and the empirical formula will never be greater than the molecular formula, but THE TWO CAN BE EQUAL. Whew!!! Ray
Because an empirical formula is the simplest form of a compound, we know that the molecular formula contains more atoms than it does. Since we are given the molar mass, we can use this formula. x ( MM of empirical formula ) = MM of molecular formula MM of empirical formula = 12(2) + 1(6) + 16 = 46 MM of molecular formula = 138 46x = 138 x= 138 / 46 x=3 Therefore, the molecular formula is 3(C2H6O) that is C6H18O3
CH4 has the same molecular and empirical formulas.
An empirical formula is a brutto formula; a molecular formula explain the structure of a molecule.
In order to find molecular formula from empirical formula, one needs to know the molar mass of the molecular formula. Then you simply divide the molar mass of the molecular formula by the molar mass of the empirical formula to find out how many empirical formulae are in the molecular formula. Then you multiply the subscripts in the empirical formula by that number.
The empirical formula for nitrogen dioxide is the same as its molecular formula - NO2. See related question below for more details on how to find empirical formulas.
A molecular formula is identical to the empirical formula, and is based on quantity of atoms of each type in the compound.The relationship between empirical and molecular formula is that the empirical formula is the simplest formula, and the molecular can be the same as the empirical, or some multiple of it. An example might be an empirical formula of C3H8. Its molecular formula may be C3H8 , C6H16, C9H24, etc. Looking at it the other way, if the molecular formula is C6H12O6, the empirical formula would be CH2O.
A molecular formula is identical to the empirical formula, and is based on quantity of atoms of each type in the compound.The relationship between empirical and molecular formula is that the empirical formula is the simplest formula, and the molecular can be the same as the empirical, or some multiple of it. An example might be an empirical formula of C3H8. Its molecular formula may be C3H8 , C6H16, C9H24, etc. Looking at it the other way, if the molecular formula is C6H12O6, the empirical formula would be CH2O.
A molecular formula is identical to the empirical formula, and is based on quantity of atoms of each type in the compound.The relationship between empirical and molecular formula is that the empirical formula is the simplest formula, and the molecular can be the same as the empirical, or some multiple of it. An example might be an empirical formula of C3H8. Its molecular formula may be C3H8 , C6H16, C9H24, etc. Looking at it the other way, if the molecular formula is C6H12O6, the empirical formula would be CH2O.
A molecular formula is identical to the empirical formula, and is based on quantity of atoms of each type in the compound.The relationship between empirical and molecular formula is that the empirical formula is the simplest formula, and the molecular can be the same as the empirical, or some multiple of it. An example might be an empirical formula of C3H8. Its molecular formula may be C3H8 , C6H16, C9H24, etc. Looking at it the other way, if the molecular formula is C6H12O6, the empirical formula would be CH2O.
Molecular formulas that are also empirical formulas include compounds like water (H2O), methane (CH4), and hydrogen peroxide (H2O2). In these cases, the molecular formula is the same as the empirical formula because the compounds consist of only one type of atom.
Imperical fomula is similar to molecular fomula.It is in simpleset form
The empirical formula of a compound shows the lowest whole number ratio of the elements in that compound; AKA simplest formula. The molecular formula describes the number of atoms of each element that make up the molecule or formula unit; AKA actual formula
To find the molecular formula from the empirical formula, we need to know the molar mass of the empirical formula. In this case, the empirical formula's molar mass is 88. To find the molecular formula, we divide the given molecular mass (176) by the empirical formula's molar mass (88) to get 2. This means the molecular formula of Vitamin C is twice the empirical formula, so the molecular formula is C6H8O6.
An empirical formula is elaborated after the chemical analysis of a compound; for a structural formula more in depth studies are necessary.