The number of chlorine atoms in 2,00 moles of CCl4 is 48,113.10e23.
If the chlorine is in its normal state of diatomic molecules, there are 16.0 moles of chlorine atoms in 8.00 moles of chlorine. The number of atoms is then 16 times Avogadro's number = 9.64 X 1024, to the justified number of significant digits.
Avogadro's numbers worth. I mole of anything is, 6.022 X 1023 atoms ----------------------------
9.02 X 10^23 atoms Cl2 (1mol Cl2/6.022 X 10^23) = 1.50 moles Cl2
CCl is not an existing, possible compound. However it should have two atoms in total, one C (= Carbon) and one Cl (= Chlorine) atom.
To find the number of moles of PCl3, you need to first calculate the number of moles of Cl atoms in 3.68 * 10^25 atoms. There are 3 Cl atoms in each molecule of PCl3, so you divide the number of Cl atoms by 3 to get the number of moles of PCl3.
4. 4 atoms of chlorine, one of carbon. The formula is CCl4
To find the number of moles of atoms in 75.10 grams of chlorine, you need to first determine the molar mass of chlorine. Chlorine has a molar mass of approximately 35.45 g/mol. Next, you can use the formula Moles = Mass / Molar Mass to calculate the moles of chlorine atoms in 75.10 grams. This would result in approximately 2.12 moles of chlorine atoms.
There are four atoms of chlorine in carbon tetrachloride (CCl4), one for each chlorine atom bonded to the central carbon atom.
Since chlorine gas is a diatomic molecule (Cl2), one mole of chlorine gas contains two moles of chlorine atoms. Therefore, 6.00 moles of chlorine atoms would be equivalent to 3.00 moles of chlorine gas.
If the chlorine is in its normal state of diatomic molecules, there are 16.0 moles of chlorine atoms in 8.00 moles of chlorine. The number of atoms is then 16 times Avogadro's number = 9.64 X 1024, to the justified number of significant digits.
A molecule of carbon tetrachloride contains one carbon atom and four chlorine atoms.
Avogadro's numbers worth. I mole of anything is, 6.022 X 1023 atoms ----------------------------
For this conversion, you need the atomic masses of the elements involved, found on any periodic table. Then you add them up with their abundance in the compound to find the total molar (molecular) mass. The molar mass is the mass in grams of one mole of the compound. Carbon = 12.0 grams Chlorine = 35.5 grams × 4 atoms = 142.0 grams ------------------------------------------------------------- Carbon tetrachloride = 154.0 grams/mole Then you do a gram --> mole conversion, taking the amount given and dividing it by the molar mass. Grams ÷ Molar mass = Moles 22.5 grams ÷ 154.0 grams = 0.146 moles CCl4
To find the number of moles, you need to divide the given mass (in grams) by the molar mass of CCl4, which is 153.82 g/mol. Therefore, 56 g / 153.82 g/mol = 0.364 moles of CCl4.
9.02 X 10^23 atoms Cl2 (1mol Cl2/6.022 X 10^23) = 1.50 moles Cl2
445g PbCl2 x 1 mol PbCl2 x 6.022x10^23 atoms PbCl2------------- ----------------- ------------- =278g PbCl2 1 mol PbCl2when multiplied through it equals 9.63975885 x 10^23formatting sucks sorry :)
Divide the Molar Mass of C and Cl4 by 56 to get your awnswer!