the formula is no. moles is mass / molecular mass. As the number of moles is 1, the mass required will be exactly the same as the molecular mass, which is 58.32g
To completely precipitate 86.9mg of magnesium from seawater, you would need to add an equal molar amount of sodium hydroxide. The molar mass of magnesium is about 24.3 g/mol, so 86.9mg is equivalent to about 3.57 mmol of magnesium. You would need the same amount of mmol of sodium hydroxide to completely precipitate the magnesium.
To make a 1% aqueous solution of potassium hydroxide, you would mix 1 gram of potassium hydroxide with 99 grams of water (for a total of 100 grams solution). This would give you a solution where 1% of the total weight is potassium hydroxide.
A solution that is refered to as a percentage of something (like potassium hydroxide, KOH) refers to the mass of the solute compared to the total solution, so a 5% KOH solution would be 5g KOH + 95g H2O, and the 5g KOH would be 5% of the 100g total of the solution.
the molar mass of sodium hydroxide is 40g/mol mike
To find the grams of sodium hydroxide needed, you first calculate the moles required using the molarity equation (moles = Molarity x Volume). Then, convert moles to grams using the molar mass of sodium hydroxide, which is 40 g/mol. Finally, the calculation would be: (7.80 mol/L) x 0.250 L x 40 g/mol = 78 grams of sodium hydroxide.
A lot
The weight of the tablet is 2.50g, which is the total weight. The weight of magnesium hydroxide is 400mg. To find the percentage, convert the weight of magnesium hydroxide to grams (0.400g) and divide by the total weight, then multiply by 100. The percentage of the tablet that is magnesium hydroxide is 16%.
To completely precipitate 86.9mg of magnesium from seawater, you would need to add an equal molar amount of sodium hydroxide. The molar mass of magnesium is about 24.3 g/mol, so 86.9mg is equivalent to about 3.57 mmol of magnesium. You would need the same amount of mmol of sodium hydroxide to completely precipitate the magnesium.
The density of a sodium hydroxide solution is typically around 1.02 to 1.03 grams per cubic centimeter.
To make a 5% water solution of sodium hydroxide, you would mix 5 grams of sodium hydroxide with 95 grams of water. This will give you a total of 100 grams of solution, with 5% of it being sodium hydroxide. Remember to always add the sodium hydroxide to the water slowly and with caution due to its caustic nature.
4.00 grams of magnesium oxide is composed of 2.43 grams of magnesium (Mg) and 1.57 grams of oxygen (O). Therefore, to produce 4.00 grams of magnesium oxide, you would need 2.43 grams of magnesium.
To determine the number of grams of pure sodium hydroxide present in a solution with a known volume, you need to know the concentration of the solution in g/ml. Then you can use the formula: grams = concentration (g/ml) x volume (ml)
To make a 1% aqueous solution of potassium hydroxide, you would mix 1 gram of potassium hydroxide with 99 grams of water (for a total of 100 grams solution). This would give you a solution where 1% of the total weight is potassium hydroxide.
A solution that is refered to as a percentage of something (like potassium hydroxide, KOH) refers to the mass of the solute compared to the total solution, so a 5% KOH solution would be 5g KOH + 95g H2O, and the 5g KOH would be 5% of the 100g total of the solution.
Molarity = moles of solute/Liters of solution ( 918 ml = 0.918 liters )rearranged algebraically,moles of solute = Liters of solution * Molaritymoles of NaOH = (0.918 l)(0.4922 M)= 0.45184 moles NaOH=======================so,0.45184 moles NaOH (39.998 grams/1 mole NaOH)= 18.1 grams sodium hydroxide needed============================
98g
the molar mass of sodium hydroxide is 40g/mol mike