In exactly one gram formula unit, there are always Avogadro's Number of individual formula units. Therefore, the number of gram moles or gram formula units in 3.61 X 1023 formula units is* 3.61/6.022 or 0.599, to the justified number of significant digits.
______________________________
The factor 1023 occurs in both numerator and denominator and therefore need not be written.
To find the number of moles of chloride ions in aluminum chloride, you first need to convert 0.2520g of aluminum chloride to moles. Then, since there are three chloride ions per one aluminum chloride molecule, you would multiply the number of moles of aluminum chloride by 3 to find the moles of chloride ions.
Aluminum chloride contains 3 chlorine atoms per molecular unit. Therefore, in 3 moles there are 3 times Avogadro's number of chloride ions = 1.807 X 1024.
Two Chloride ions (2Cl-) ions are needed with their -1 charge on each one to cancel out the +2 charge of the single Magnesium ion (Mg2+). So Magnesium Chloride would have the chemical formula: MgCl2
In 1 mol of AlCl3, there are 3 chloride ions. First calculate the moles of AlCl3 in the solution: 65.5 mL is 0.0655 L. Multiply 0.0655 L by 0.210 mol/L to get the moles of AlCl3. Finally, multiply this by 3 to find the number of chloride ions in the solution.
In a 1M solution of sodium chloride, there would be 1 mole of sodium ions and 1 mole of chloride ions in 1 liter of the solution. This is because each formula unit of sodium chloride dissociates into one sodium ion and one chloride ion in solution.
There are 2 moles of KCl in the sample, so there are 2 moles of chloride ions as well. Since each molecule of KCl contains 1 chloride ion, there are 2 moles of chloride ions in total.
To find the number of moles of chloride ions in aluminum chloride, you first need to convert 0.2520g of aluminum chloride to moles. Then, since there are three chloride ions per one aluminum chloride molecule, you would multiply the number of moles of aluminum chloride by 3 to find the moles of chloride ions.
I suppose that the answers are: - 0,9 moles aluminium ions - 2,7 moles chloride ions
2.4088 x 1024 chloride ions
In 1.5 moles of CaCl2, you would have 3 moles of ions or atoms of calcium and 3 moles of ions of chloride. Since CaCl2 dissociates into 1 calcium ion (Ca2+) and 2 chloride ions (2Cl-), this means you would have 3 moles of calcium ions and 6 moles of chloride ions in total.
Aluminum chloride contains 3 chlorine atoms per molecular unit. Therefore, in 3 moles there are 3 times Avogadro's number of chloride ions = 1.807 X 1024.
Two Chloride ions (2Cl-) ions are needed with their -1 charge on each one to cancel out the +2 charge of the single Magnesium ion (Mg2+). So Magnesium Chloride would have the chemical formula: MgCl2
The formula unit for calcium chloride is CaCl2. There are two chloride ions in one formula unit of calcium chloride. We can also say that there are two moles chloride ions in one mole of CaCl2.
In 1 mol of AlCl3, there are 3 chloride ions. First calculate the moles of AlCl3 in the solution: 65.5 mL is 0.0655 L. Multiply 0.0655 L by 0.210 mol/L to get the moles of AlCl3. Finally, multiply this by 3 to find the number of chloride ions in the solution.
The equation for the reaction is Zn + 2 HCl -> ZnCl2. The gram atomic masses of zinc and chlorine are 65.39 and 35.453 respectively. Therefore, the number of grams of zinc chloride that can be formed from 7.96 g of zinc is: 7.96{[65.39 + 2(35.453)]/65.39} or about 16.6 g of zinc chloride, to the justified number of significant digits.
In a 1M solution of sodium chloride, there would be 1 mole of sodium ions and 1 mole of chloride ions in 1 liter of the solution. This is because each formula unit of sodium chloride dissociates into one sodium ion and one chloride ion in solution.
In one mole of CaCl2, there are 2 moles of chloride ions since there are 2 chloride ions for every 1 CaCl2 molecule. Therefore, there are 2 * 6.022 x 10^23 = 1.2044 x 10^24 chloride ions in one mole of CaCl2.