That would be a 5% solution of Lugol's iodine.
A yellow precipitate of lead iodide is formed due to the reaction between potassium iodide and lead nitrate. This reaction is a double displacement reaction, where the potassium from potassium iodide swaps places with the lead from lead nitrate, forming the insoluble lead iodide.
Silver nitrate + Potassium iodide ----> Silver iodide + Potassium nitrate AgNO3 + KI ----> AgI + KNO3
A white precipitate of silver iodide forms due to the reaction between silver ions and iodide ions, leaving potassium nitrate in solution. This reaction is a double displacement reaction and is used as a test for iodide ions.
When ferric chloride (FeCl3) is added to a solution of potassium iodide (KI), it reacts to form iron(III) iodide (FeI3) and potassium chloride (KCl). The iron(III) iodide produced is a brownish-red color, indicating the presence of the Fe3+ ion. This reaction can be represented by the following chemical equation: 2FeCl3 + 6KI -> 2FeI3 + 6KCl
To prepare a 10% potassium iodide solution, dissolve 10 grams of potassium iodide in 90 ml of water. Don't forget to wear appropriate protective gear like gloves and goggles. Stir the mixture well until the potassium iodide is fully dissolved.
Well, darling, SSKI stands for saturated solution of potassium iodide, while Lugol's Solution is a combination of potassium iodide and elemental iodine. So basically, SSKI is just potassium iodide dissolved in water, while Lugol's Solution has a little extra kick with some iodine thrown into the mix. Just think of SSKI as the plain jane version and Lugol's Solution as the fancy one with a bit more pizzazz.
To prepare a 5% potassium iodide solution, weigh 5 grams of potassium iodide and dissolve it in 100 mL of water. Stir until the potassium iodide is completely dissolved to achieve a 5% solution.
No, KI is a strong electrolyte. All soluble salts are strong electrolytes, and KI is a salt since it is an ionic compound, but not an acid or a base.
KI or potassium iodide will be basic in solution because it is the product of KOH (a strong base) and HI (a weak acid.)
The solution of potassium iodide (if it is not extremely diluted) is more dense.
A yellow precipitate of lead iodide is formed due to the reaction between potassium iodide and lead nitrate. This reaction is a double displacement reaction, where the potassium from potassium iodide swaps places with the lead from lead nitrate, forming the insoluble lead iodide.
Potassium iodide solution is a compound because it is a pure substance made up of potassium and iodine chemically bonded together in a fixed ratio.
Silver nitrate + Potassium iodide ----> Silver iodide + Potassium nitrate AgNO3 + KI ----> AgI + KNO3
potassium nitrate would be left was an aqueous solution and lead iodide would be the precipitate
The compound precipitate formed when potassium iodide is added to a solution of lead nitrate is lead iodide, which is a yellow precipitate. This reaction is a double displacement reaction where the potassium ion and nitrate ion switch partners to form potassium nitrate and lead iodide.
Potassium iodide is used in the preparation of iodine solution to increase the solubility of iodine in water. It helps stabilize the iodine in solution by forming triiodide ions, which prevents iodine from sublimating back to a solid state. Additionally, potassium iodide helps to maintain a consistent concentration of iodine in the solution.
When copper sulfate solution is mixed with potassium iodide, a solid precipitate of copper iodide is formed, while potassium sulfate remains in solution. This reaction is a double displacement reaction. The balanced chemical equation is CuSO4 + 2KI → CuI2 + K2SO4.