Alright so you begin with what you need, this isotope of Protactinium has 234 nucleons, its atomic number is 91, in Beta decay we release an electron, which has no nucleons (protons and neutrons) and an atomic number of -1 so when we take out -1 from 91, so 91 - -1 we get 92, which is of course Uranium, this particular isotope has 234 nucleons, now, to show where it has gone, write the electron in, and add a antineutrino aswell, heres how mine looks.
Pa23491 ---> U23491 + e0-1 + antineutrino (a v with a little line above it)
Hope this helps :)
Alpha decay occurs when thorium-231 undergoes radioactive decay to form protactinium-231. In alpha decay, a nucleus emits an alpha particle (two protons and two neutrons) to transform into a nucleus with a lower atomic number.
Thorium-234 does not decay into Protactinium-234. Instead, Thorium-234 naturally decays by alpha emission to Protactinium-230. The difference in decay modes is due to variances in their nuclear structures and energetics.
Seems some mistake in printing the mass number of thorium. It has to be 227. No Th-225 is available as far as the tables have been analysed. When a alpha particle comes out then the atomic number of parent is reduced by 2 and its mass number will be reduced by 4. So in case of Th-227, it gets changed to Ra-223 after the emission of an alpha particle.
227Ac89
In beta decay of thorium-234, a neutron in the nucleus of thorium-234 is transformed into a proton, releasing an electron (beta particle) and an antineutrino. This process converts the thorium-234 nucleus into protactinium-234.
The balanced nuclear equation for the alpha decay of thorium-230 is: ^230Th → ^226Ra + ^4He
The balanced equation for the alpha decay of thorium-229, Th-229, is: Th-229 -> Ra-225 + He-4 This equation shows that a thorium-229 nucleus undergoes alpha decay to form a radium-225 nucleus and a helium-4 particle.
What is missing is the type of decay that occurs during the transformation. For example, uranium-238 decays into thorium-234 through alpha decay, so the missing component would be the emission of an alpha particle in the balanced equation.
alpha
224
The decay equation for uranium-238 (U-238) decaying into an alpha particle (helium-4) can be represented as follows: (^{238}{92}\text{U} \rightarrow ^{4}{2}\text{He} + ^{234}_{90}\text{Th}). This equation shows the radioactive decay process of U-238 into an alpha particle and thorium-234.
By alpha decay Th-230 is transformed in Ra-226.
The decay of thorium by alpha decay the resultant nuclide is the element radium. The specific nuclide of radium cannot be determined unless we know which specific nuclide of thorium underwent alpha decay.
232Th --> 228Ra + 4He 228Ra --> 228Ac + e- 228Ac --> 228Th + e- 228Th --> 224Ra + 4He 224Ra --> 220Rn + 4He 220Rn --> 216Po + 4He 216Po --> 212Pb + 4He 212Pb --> 212Bi + e- 212Bi --> 208Tl + 4He, 212Po + e- 208Tl --> 208Pb + e- 212Po --> 208Pb + 4He 208Pb, stable Other isotopes of Thorium undergo beta decay, but they are not naturally occurring.
daughter element
Uranium 238 is transformed in thorium 234 by alpha decay.
The two elements that undergo alpha decay are uranium and thorium.