it turnes into granit hope this helped you guys xoxoxoxxx :)
To determine the pressure of the gas when the temperature rises to 87 degrees Celsius, you would need additional information such as the initial pressure, volume, and type of gas. Use the ideal gas law equation (PV = nRT) to calculate the final pressure. Make sure to convert the temperature to Kelvin (87°C + 273 = 360 K) before solving the equation.
The relationship between temperature and pressure is not named after a specific person, like Boyle's or Charles' Laws, but states that the relationship between the temperature and pressure of a gas (usually as observed in a rigid container) is direct. Therefore, as temperature increases, pressure does too.This is Gay-Lussac's law.The temperature and pressure of gasses are related. As the pressure increases the temperature also increases, and vice verse. As the pressure decreases the temperature gets colder.The ideal-gas law may be expressed as PV=nRT.Absolute temperature TNumber of moles (a measure of the number of molecules) nVolume VPressure PRydberg's constant R (some value that makes the numbers and the units work)Obviously, from the equation, you could half the temperature and keep the pressure the same, if, for example, you cut the volume in half. Or you could half the temperature and double the number of moles, and the pressure wouldn't change.
If it is an ideal gas, then 0.409 ATM. The governing equation is pv=nrt. Everything on the right side of the equation is constant so pv = constant. Therefore: p1v1 = p2v2 (0.7atm)(3.8L) = p2(6.5L) p2 = 0.409 ATM
To find the final temperature, we can use the principle of conservation of energy: heat lost by gold = heat gained by water. We can use the formula m * c * ∆T to calculate the heat exchanged. By setting the two heat exchanges equal to each other and solving for the final temperature, we can find that the final temperature is 25.9 degrees Celsius.
I believe it will be 145.52 degrees Celsius if I did my math correctly. You need to convert calories to joules. I believe one joule raises the temp of 1 gram water by 1 degree Celsius so 1200*4.184=5020.8 J /40grams=125.52 temp increase+20=145.52 degrees Celsius.
BOYLES LAW The relationship between volume and pressure. Remember that the law assumes the temperature to be constant. or V1 = original volume V2 = new volume P1 = original pressure P2 = new pressure CHARLES LAW The relationship between temperature and volume. Remember that the law assumes that the pressure remains constant. V1 = original volume T1 = original absolute temperature V2 = new volume T2 = new absolute temperature P1 = Initial Pressure V1= Initial Volume T1= Initial Temperature P2= Final Pressure V2= Final Volume T2= Final Temperature IDEAL GAS LAW P1 = Initial Pressure V1= Initial Volume T1= Initial Temperature P2= Final Pressure V2= Final Volume T2= Final Temperature Answer BOYLES LAW The relationship between volume and pressure. Remember that the law assumes the temperature to be constant. or V1 = original volume V2 = new volume P1 = original pressure P2 = new pressure CHARLES LAW The relationship between temperature and volume. Remember that the law assumes that the pressure remains constant. V1 = original volume T1 = original absolute temperature V2 = new volume T2 = new absolute temperature P1 = Initial Pressure V1= Initial Volume T1= Initial Temperature P2= Final Pressure V2= Final Volume T2= Final Temperature IDEAL GAS LAW P1 = Initial Pressure V1= Initial Volume T1= Initial Temperature P2= Final Pressure V2= Final Volume T2= Final Temperature
60kpa
60
You have not given enough information to answer this question. pressure depends on volume temperature and the amount of gas. just stating that the amount of gas remains constant is not enough information.
To find the final temperature, we can use the ideal gas law. First, calculate the initial specific volume of the mixture using the quality of the saturated steam. Then, use the equation of state to find the final specific volume at the new pressure. Finally, determine the final temperature using the final specific volume and the new pressure.
To calculate the final temperature of the water, we need additional information such as the initial temperature of the second substance and their specific heat capacities. Without this information, we cannot provide an accurate answer.
You can calculate pressure and temperature for a constant volume process using the combined gas law.
Use the ideal gas equation to solve this. PV= nRT. You will have to convert your pressure to atmosphere to use the constant R = 0.0821 L*ATM/mol*K. You know your initial pressure, volume, and temperature. Moles can be neglected (n) because they will stay the same. You also know your final pressure and final volume, so you can solve for final temperature.
In Boyle's Law, p2 represents the final pressure when a gas undergoes a change in volume at constant temperature. The law states that the initial pressure (p1) times the initial volume (V1) is equal to the final pressure (p2) times the final volume (V2), where p1V1 = p2V2.
When nitrogen stored at 6000 psi is released into the atmosphere, it undergoes adiabatic expansion and experiences a drop in temperature due to the decrease in pressure. The final temperature will depend on various factors like initial temperature, volume, and surroundings.
This equation represents Boyle's Law, which states that the initial pressure multiplied by the initial volume is equal to the final pressure multiplied by the final volume for a given quantity of gas at constant temperature.
When allowed to stand for long enough, the final temperature will reach room temperature.