That term to me is incorrect it should be capacitance impedance. Resistance is linear impedance. CAPACITANCE will follow a vector caused by the capacitor value.
There is no physical relationship between resistance and capacitive reactance. But if someone tells you that the impedance of something: Z = 3 -4j, the real resistance is 3 and the reactive capacitance is -4.
The capacitive reactance is approximately 4 kΩ .
This isn't necessarily the case. It depends upon the value of resistance (which, at resonance, determines the current), and the values of the inductive- and capacitive-reactance.At resonance, the impedance of the circuit is equal to its resistance. This is because the vector sum of resistance, inductive reactance, and capacitive reactance, is equal the the resistance. This happens because, at resonance, the inductive- and capacitive-reactance are equal but opposite. Although they still actually exist, individually.If the resistance is low in comparison to the inductive and capacitive reactance, then the large current will cause a large voltage drop across the inductive reactance and a large voltage drop across the capacitive reactance. Because these two voltage drops are equal, but act the opposite sense to each other, the net reactive voltage drop is zero.So, at (series) resonance:a. the circuit's impedance is its resistance (Z = R)b. the current is maximumc. the voltage drop across the resistive component is equal to the supply voltaged. the voltage drop across the inductive-reactance component is the product of the supply current and the inductive reactancee. the voltage drop across the capacitive-reactance component is the product of the supply current and the capacitive reactancef. the voltage drop across both inductive- and capacitive-reactance is zero.
A 'purely capacitive' circuit is a theoretical, or 'ideal', circuit, in which the resistance and inductance of the circuit is ignored, and in which the load current theoretically leads the supply voltage by exactly 90 electrical degrees. It is often used as a means of introducing students to the behaviour of 'real' a.c. circuit which contain contain resistance and inductance, as well as capacitance.
Because the only opposition to current flow is the resistance of the circuit. This is because, at resonance, the vector sum of the inductive and capacitive reactances is zero.
What is meant by the term resistivity?
There is no physical relationship between resistance and capacitive reactance. But if someone tells you that the impedance of something: Z = 3 -4j, the real resistance is 3 and the reactive capacitance is -4.
Because it is. Capacitive reactance is a form of resistance, along with inductive reactance. All are measured in ohms.
The capacitive reactance is approximately 4 kΩ .
when ever current passing through any two parallel transmission line than due to the dieletric property of conductor some what capacitance effect will be generate between them that phenomina called as capitance reactance/////////////////// that symply we can called capitance reactance is measure of capitance The reactance of a capacitor is its resistance.
The relationship between resistance and capacitance in a clc circuit is the capacitive reactance given by XC.
Susceptance is the reciprocal of reactance, and is expressed in siemens (symbol: S). So, inductive susceptanceis the reciprocal of inductive reactance, and capacitive susceptance is the reciprocal of capacitive reactance.
This isn't necessarily the case. It depends upon the value of resistance (which, at resonance, determines the current), and the values of the inductive- and capacitive-reactance.At resonance, the impedance of the circuit is equal to its resistance. This is because the vector sum of resistance, inductive reactance, and capacitive reactance, is equal the the resistance. This happens because, at resonance, the inductive- and capacitive-reactance are equal but opposite. Although they still actually exist, individually.If the resistance is low in comparison to the inductive and capacitive reactance, then the large current will cause a large voltage drop across the inductive reactance and a large voltage drop across the capacitive reactance. Because these two voltage drops are equal, but act the opposite sense to each other, the net reactive voltage drop is zero.So, at (series) resonance:a. the circuit's impedance is its resistance (Z = R)b. the current is maximumc. the voltage drop across the resistive component is equal to the supply voltaged. the voltage drop across the inductive-reactance component is the product of the supply current and the inductive reactancee. the voltage drop across the capacitive-reactance component is the product of the supply current and the capacitive reactancef. the voltage drop across both inductive- and capacitive-reactance is zero.
Capacitive reactance is an opposition to changes in voltage across an element. This resistance is usually caused by a magnetic field.
Capacitive reactance.
Series resonance occurs when a circuit's inductive reactance is equal to its capacitive reactance. The resistance of the circuit is irrelevant.WebRep currentVote noRating noWeight
what is meant by the term catheterisation