answersLogoWhite

0

What else can I help you with?

Continue Learning about Engineering

What is the effect on the total resistance if increase in resistors in series?

That depends ... in a very interesting way ... on whether they are connected in series or in parallel. -- If the resistors are in series, then the total resistance increases when you add another resistor, and it's always greater than the biggest single one. -- If the resistors are in parallel, then the total resistance decreases when you add another resistor, and it's always less than the smallest single one.


How do you find unknown value of a resistor when total resistor values and voltage are known in a series circuit?

A: If you know the total resistance and total voltage then you know total current flow for the circuit, this current will be same for every resistor in series however the voltage drop will change for each resistor . So measuring the voltage drop across the resistor in question and divide by the total current will give you the resistor value.


How do you place 3 resistance to get the total resistance of 1 ohm?

It depends on the resistance of each resistor. If each resistor, for example, is 0.333 ohm, then you could connect them in series. If each resistor, for example, is 3 ohms, then you could connect them in parallel.


How does electricity react to resistances in parallel and in series?

Resistances in series act just as if they were one single resistor. The value of the single resistor is the sum of the individual resistors connected in series ... Ra + Rb + Rc etc. When several resistors are in series, the effective total is greater than the biggest one. Resistance in parallel act just as if they were one single resistor. The reciprocal of the value of the single resistor is the sum of the reciprocals of the individual resistors connected in parallel ... Total effective resistance = 1 divided by (1/Ra + 1/Rb + 1/Rc + etc.) When several resistors are in parallel, the effective total is less than the smallest one. Once you figure out the effective value of the series- or parallel-combination of many resistors, you handle them as if they were one single resistor, and you can work with the voltage and current: Current through any resistance = (Voltage across it) divided by (its resistance).


If a circuit contains 3-ohm resistance in a series what is the equivalent resistance of combination?

Equation for Equivalent Resistance in Series isReq= R1+R2+R3+...........If each resistor is equal to 3OhmsthenReq= R1+R2+R3Req=3+3+3Req=9 OhmsThe Equivalent resistance is 9 Ohms.

Related Questions

What is the total resistance of a 5-ohm resistor and a 10-ohm resistor in a parallel series?

2


What is the rule for finding the total resistance of a number of resistors connected in series?

If the resistors are in series, then the total resistance is simply the sum of the resistances of each resistor.


What will happen to the other resistor if the number of resistor decreases?

the voltage across that resistor will increase if it is in series with the other resistors. the current through that resistor will increase if it is in parallel with the other resistors.


Is total resistance less than smallest resistor in a series parallel circuit?

no


What happens in a series circuit if one of the resistors is replaced with a resistor having a lower resistance value?

In a series circuit, if one resistor is replaced with a resistor of lower resistance, the total resistance in the circuit decreases. This leads to an increase in the overall current flowing through the circuit.


When 2 resistors are connected in parallel r1r2 are?

Two resistors connected in parallel are 1/2 the sum of their resistance. The resistance of two resistors connected in series is the sum of their resistance. For example: The total resistance of a 100 ohm resistor connected to a 200 ohm resistor in parallel is 100+200 divided by 2 = 150 ohms. The total resistance of a 100 ohm resistor connected to a 200 ohm resistor in series 100+200= 300 ohms.


What is the effect on the total resistance if increase in resistors in series?

That depends ... in a very interesting way ... on whether they are connected in series or in parallel. -- If the resistors are in series, then the total resistance increases when you add another resistor, and it's always greater than the biggest single one. -- If the resistors are in parallel, then the total resistance decreases when you add another resistor, and it's always less than the smallest single one.


How does the area of series resistors affect the overall resistance in a circuit?

The total resistance in a circuit with series resistors is the sum of the individual resistances. When more resistors are added in series, the total resistance increases because the current has to pass through each resistor, making it harder for the current to flow.


How do you find unknown value of a resistor when total resistor values and voltage are known in a series circuit?

A: If you know the total resistance and total voltage then you know total current flow for the circuit, this current will be same for every resistor in series however the voltage drop will change for each resistor . So measuring the voltage drop across the resistor in question and divide by the total current will give you the resistor value.


How is resistance added in a series circuit?

Resistance in a series circuit is added by simply connecting resistors end-to-end. This results in the total resistance being the sum of the individual resistances. The current passing through each resistor in a series circuit remains the same.


What are the laws of series and parallel connection?

1.In series connection the total resistance is equal the total number of resistor that was connected in series 2.the current is constant in a series connection 3.in a series connection total voltage is equal the number of of volt per cells


Did the the total voltage across the resistors does not depend on the resistor value?

It depends on where and how the resistor is placed in a circuit. A string of series resistors will split the voltage across all them depending on their values. All of the resistors in parallel will have the same voltage across all of them no matter what their resistance is.