The voltage of a battery goes as the current times the resistance (V=IR). Because the voltage is being held constant, the resistor that draws the most current will have the lower resistance.
When a resistor is added the current goes down, that is expressed in the equation current= voltage/ resistance
Internal resistance is approximately equal to 94.667
Half that, or 2 amps. The basic rule in circuits is that voltage (E) equals current (I) times resistance (R). Here's how that expression of Ohm's law looks: E= I x R That means that current equals voltage divided by resistance, as is shown here: I = E / R This expression says that resistance is inversely proportional to current (with voltage staying the same). Further, if resistance goes up, current goes down. If resistance doubles (goes up by a factor of 2), which it does in the case specified in the question, then current is cut in half (goes down by a factor of 2). Half of 4 amps is 2 amps, and that's where the answer came from.
half of the current flowing thru resistor 1.... V=IR.
:) It's connected together
When a resistor is added the current goes down, that is expressed in the equation current= voltage/ resistance
Internal resistance is approximately equal to 94.667
4.8 ohms
That will depend on the sum of the load resistance and the internal resistance of the battery (this is true for all power sources, not just 6 volt batteries). Small compact batteries tend to have higher internal resistance and therefore are more limited in the current they can deliver to a given load than larger batteries.
If a 9.0 volt battery is connected to a 4.0-ohm and 5.0-ohm resistor connected in series, the current in the circuit is 1.0 amperes. If a 9.0 volt battery is connected to a 4.0-ohm and 5.0-ohm resistor connected in parallel, the current in the circuit is 0.5 amperes.
Half that, or 2 amps. The basic rule in circuits is that voltage (E) equals current (I) times resistance (R). Here's how that expression of Ohm's law looks: E= I x R That means that current equals voltage divided by resistance, as is shown here: I = E / R This expression says that resistance is inversely proportional to current (with voltage staying the same). Further, if resistance goes up, current goes down. If resistance doubles (goes up by a factor of 2), which it does in the case specified in the question, then current is cut in half (goes down by a factor of 2). Half of 4 amps is 2 amps, and that's where the answer came from.
The current depends on what is connected to the battery's terminals. If nothing is connected to it, then there is no current, and the battery lasts quite a while. In general, the current is 1.5/resistance of the external circuit connected to the battery until that number gets too big, and then the voltage of the battery sags, because it can't deliver that much current.
half of the current flowing thru resistor 1.... V=IR.
:) It's connected together
When a battery is connected to foil, the foil can act as a resistor, creating resistance to the flow of electric current and causing a buildup of heat. This heat is generated due to the resistance in the foil which converts electrical energy into thermal energy.
Current will always flow in both resistors, but the one with the lower resistance will have more current flow through it. The value of the current in each resistor is calculated by dividing the voltage of the source by the resistance of the individual resistor. As long as the capability of the power source isn't exceeded, the current through each resistor isn't affected by the presence of the other resistor. Said another way, if two resistors are connected in parallel across a source, neither one "cares" that the other resistor is connected across the source. The two resistors work independently.
A 4000-Ω resistor is connected across 220 V will have a current flow of 0.055 A.Ohm's law: Voltage equals Current times Resistance