Purely additive. 2+3+4+5+6=20.
That depends ... in a very interesting way ... on whether they are connected in series or in parallel. -- If the resistors are in series, then the total resistance increases when you add another resistor, and it's always greater than the biggest single one. -- If the resistors are in parallel, then the total resistance decreases when you add another resistor, and it's always less than the smallest single one.
:) It's connected together
The total resistance in a series circuit is simply the sum of the individual resistances of all the resistors connected in that series. This means that if you have multiple resistors, you add their resistance values together to find the total resistance. Mathematically, it can be expressed as ( R_{total} = R_1 + R_2 + R_3 + \ldots + R_n ). The total resistance increases as more resistors are added in series.
Given twelve 1 KOhm resistors, connected in the shape of a cube, in order to determine the net resistance between opposite corners, first draw the cube in two dimensions. (Try this at each step before continuing, so you can understand the lesson as it unfolds.)There are three resistors leaving the initial vertex, and three resistors entering the final vertex. In between those six resistors, are six more resistors, each pair connected together on one end, and to two other resistors on the other end.If every resistor has the same value, then (by symmetry), the voltage on the ends of the first three resistors must be the same. Similarly, the voltage on the ends of the last three resistors must be the same.If two points in a circuit have the same voltage, then (for purposes of analysis) you can consider them to be shorted together. That short does not change the results, as there is no current flowing through that short.With the bottom ends of the first three resistors shorted, and with the top ends of the last three resistors shorted, the circuit degrades into three resistors in parallel, in series with six more resistors in parallel, in series with three more resistors in parallel.Three 1 KOhm resistors in parallel have a net resistance of 333 ohms. Six have a net resistance of 167 ohms. Two 333 ohm resistors and one 167 ohm resistor in series have a net resistance of 833 ohms, or 5/6 of 1 KOhms.Note: This technique does not work if the resistors are not all the same value. In that case, you would need to solve 12 equations in 12 unknowns, looking at the partial currents in each branch.
A resistance 'network' consists of a number of resistors connected together in series, or in parallel, or in series-parallel, or as a complex circuit. A 'complex' circuit is one that is not series, parallel, or series-parallel.
That depends ... in a very interesting way ... on whether they are connected in series or in parallel. -- If the resistors are in series, then the total resistance increases when you add another resistor, and it's always greater than the biggest single one. -- If the resistors are in parallel, then the total resistance decreases when you add another resistor, and it's always less than the smallest single one.
R2 = 3 ohms Explanation: For a circuit you can use ohms law where: V=I*R Where V is the voltage difference throughout the surface, I is the current, and R is the total resistance of the circuit. In your case you want to find the resistance so you have to change the formula to: R=V/I R of first circuit = 25volts/12.5amps = 2 ohms R of second circuit= 25 volts / 5 amps = 5 ohms The resistors here are connected in series which means that the resistance of the two can be added together. This gives you: Rtot= R1+R2 we found R of the first resistor by calculating the resistance in the first circuit. We also found Rtot which is the resistance in the second circuit, when you connect the two resistors together in series. Rtot=2 ohms+R2 5ohm=2ohms+R2 R2 = 3 ohms If the resistors where connected in parallel you cannot simply add the resistance. In that case: (1/Rtot)=(1/R1)+(1/R2) Hope that helps
Yes. When resistors are connected in "parallel" (all the left ends connected together and all the right ends connected together) the effective resistance is always less then the smallest resistor in the group. For example If you connected a 2 ohm in parallel with a 4 ohm the effective resistance is 1.33 ohm. To your question; if you connect N equal resistors R in parallel the effective resistance would be R/N . The formula for calculating effective resistance R of a group R1, R2, R3, ... in parallel is: 1/R = 1/R1 + 1/R2 + 1/R3 + .... Note; write the right side as a single fraction by getting a common denomenator then invert to get R.
:) It's connected together
No. The resistance in a series circuit is all the resistor values added together. eg. If two resistors were in a circuit, one was 10 ohms and the other was 30 ohms, the resistance in the circuit would be 30 ohms. Hope this helps!
The total resistance in a series circuit is simply the sum of the individual resistances of all the resistors connected in that series. This means that if you have multiple resistors, you add their resistance values together to find the total resistance. Mathematically, it can be expressed as ( R_{total} = R_1 + R_2 + R_3 + \ldots + R_n ). The total resistance increases as more resistors are added in series.
If the resistors are in series the voltage can not be divided, as it has to pass first through one then the other. The amount of current that flows through a set of resistors in series will be the same at all points and the total resistance in the circuit must be equal to the sum of all the individual resistors added together. In other words the 22k and 12k Ohm resistors are the sames as a single 34k Ohm resistor.
Given twelve 1 KOhm resistors, connected in the shape of a cube, in order to determine the net resistance between opposite corners, first draw the cube in two dimensions. (Try this at each step before continuing, so you can understand the lesson as it unfolds.)There are three resistors leaving the initial vertex, and three resistors entering the final vertex. In between those six resistors, are six more resistors, each pair connected together on one end, and to two other resistors on the other end.If every resistor has the same value, then (by symmetry), the voltage on the ends of the first three resistors must be the same. Similarly, the voltage on the ends of the last three resistors must be the same.If two points in a circuit have the same voltage, then (for purposes of analysis) you can consider them to be shorted together. That short does not change the results, as there is no current flowing through that short.With the bottom ends of the first three resistors shorted, and with the top ends of the last three resistors shorted, the circuit degrades into three resistors in parallel, in series with six more resistors in parallel, in series with three more resistors in parallel.Three 1 KOhm resistors in parallel have a net resistance of 333 ohms. Six have a net resistance of 167 ohms. Two 333 ohm resistors and one 167 ohm resistor in series have a net resistance of 833 ohms, or 5/6 of 1 KOhms.Note: This technique does not work if the resistors are not all the same value. In that case, you would need to solve 12 equations in 12 unknowns, looking at the partial currents in each branch.
Purely additive. 2+3+4+5+6=20.
Two resistors wired in parallel means that both resistors are soldered together to equal the value of a smaller resistor value. Both resistors will be connected to the same line on the circuit board and then both will terminate on the same final line they are assigned to. Thus, a pair of 100k ohm resistors can take the place of one 50k ohm.
A resistance 'network' consists of a number of resistors connected together in series, or in parallel, or in series-parallel, or as a complex circuit. A 'complex' circuit is one that is not series, parallel, or series-parallel.
resistance inparallel decrease in value proportionally two resistance can be calculated as R1XR2/SUM OF R1+R2. many values can be calculated as a fraction 1/r+1/r2+1/3 ....and take the total sum reciprocal