3 phase kVA = V*I*sqrt(3)
Where voltage is line to line, and current is the actual RMS current flowing in the a wire.
kW = V*I*sqrt(3)*Cos (phi), where phi is the angle between the voltage and current; Cos (phi) is also known as the power factor. kVA is the vector sum of kW (real power) and kVAR (reactive power).
As the equations above suggest, you must know the voltage to correctly calculate the current.
The same way, as you convert Appels to Carrots ........... There is a formula: KVAr = KVA / KW or cos=KW/KVA > Yes, we are treating KW, KVA, & KVAr as the 3 sides in a 90 deg TRIANGLE ! KW= vertical katede KVAr = horizontal katede KVA = hypotenuse
To convert kilowatts (kW) to kilovolt-amperes (kVA), you can use the formula kVA = kW / power factor. If we assume a typical power factor of 0.8, 360 kW would be approximately 450 kVA (360 kW / 0.8 = 450 kVA). If the power factor is different, you would need to adjust the calculation accordingly.
To convert kVA to horsepower (hp), you can use the formula: 1 kVA = 0.746 kW, and then 1 kW = approximately 1.341 hp. A 62.5 kVA generator can produce about 50 kW (62.5 kVA × 0.8 power factor). Therefore, the generator can provide roughly 67 hp (50 kW × 1.341 hp/kW).
To convert 'kwh' to 'kvah' you first need to measure the length of time. You will then convert this amount to hours by dividing by 3,600. You will then divide this amount by the length of time.
KVA is the unit for the apparent power i.e it's the vector sum of the true power in KW and the reactive power in reactive volt-amperage. So, to get the value of the KVA for the 30KW,just divide the active power(30kw) with the power factor of that load.
The same way, as you convert Appels to Carrots ........... There is a formula: KVAr = KVA / KW or cos=KW/KVA > Yes, we are treating KW, KVA, & KVAr as the 3 sides in a 90 deg TRIANGLE ! KW= vertical katede KVAr = horizontal katede KVA = hypotenuse
Multiply by Amps.
kva*cos(phase angle)
kVA = kW divided by (power factor). The power factor is the cosine of the angle between voltage and current.
To convert 2 kW to kVA in single phase, you need to know the power factor. If we assume a power factor of 0.8 (common for many single-phase loads), the conversion formula is kVA = kW / power factor. Therefore, for 2 kW at a power factor of 0.8, the result would be 2 kVA / 0.8 = 2.5 kVA.
To convert AC tonnage to kVA and kW, use the following formulas: For kVA: kVA = (tonnage x 3.517) For kW: kW = (tonnage x 3.517 x power factor). Remember to consider the power factor of the system when converting from tonnage to kVA and kW.
5kw = 6.25 kva becoz kva = kw/ pf if we take pf is o.8
To convert kilowatts (kW) to kilovolt-amperes (kVA), you can use the formula kVA = kW / power factor. If we assume a typical power factor of 0.8, 360 kW would be approximately 450 kVA (360 kW / 0.8 = 450 kVA). If the power factor is different, you would need to adjust the calculation accordingly.
It is less confusing if we capitalize the units as required. 1 kVA = 1 kW, as originated from power [W] = current [A] * voltage [V]. The 'k' means 'times 1000'. The statement can be re-written as 1000 VA = 1000 W.
To convert 'kwh' to 'kvah' you first need to measure the length of time. You will then convert this amount to hours by dividing by 3,600. You will then divide this amount by the length of time.
KVA is the unit for the apparent power i.e it's the vector sum of the true power in KW and the reactive power in reactive volt-amperage. So, to get the value of the KVA for the 30KW,just divide the active power(30kw) with the power factor of that load.
kva and kw are related as KVA = (KW/PF) pf:power factor