No. The volt ampere (V.A) is the unit of measurement of apparent power.
Power factor is true power (expressed in watts) divided by apparent power (expressed in volt amperes).
If a load takes 50 kW at a power factor of 0.5 lagging calculate the apparent power and reactive power Answer: Apparent power = Active power / Power Factor In this case, Active power = 50 kW and power factor = 0.5 So Apparent power = 50/0.5 = 100 KVA
Power factor is truepower divide by apparent power.
The power is the product between the magnitude of voltage and the magnitude of current. Whereas the power factor is a ratio between the active power and the apparent power.
It's actually cos phi, where the Greek letter, 'phi', is the symbol for phase angle -the angle by which a load current lags or leads the supply current in an a.c. system (the Greek letter, 'theta', is used for the displacement of instantaneous values of current or voltage from the origin of a sine wave).The reason why power factor is a cosine requires you to understand the relationship between apparent power, true power, and reactive power. Apparent power is the vector sum of true power and reactive power, and can be represented, graphically, by the so-called 'power triangle'. In the power triangle, true power lies along the horizontal axis, reactive power lies along the perpendicular axis, and the apparent power forms the hypotenuse, and the angle between true power and apparent power represents the phase angle. By definition, power factor is the ratio between true power and apparent power, and this ratio corresponds to the cosine of the phase angle.From this, we can conclude that true power = apparent power x cos phi, where 'cos phi' is the 'factor' by which we must multiply apparent power to determine true power -i.e. the 'power factor'.
No Load factor is average power consumption rate divided by peak power consumption rate over a period of time. Power companies like customers who have very steady consumption rates ......Load factors approaching 1 Power factor is true power / apparent power (kW/kV.A) and is a measure of how efficiently a customer's load consumes power. Certain types of electrical loads consume power more efficiently ( resistive element heating ) and they have a Power factor approaching 1. Other types of load such as old inductions motor are quite wasteful consumers of power and the utility has to provide more current ( amperage ) for the load to convert to real power
The vector-relationship between apparent power, true power, and reactive power is represented by a right-angled triangle, whose hypotenuse represents apparent power and whose adjacent represents true power. Since power factor is defined as 'the ratio of true power to apparent power', you will find that this ratio corresponds to the cosine of the angle between them.
Ratio of voltage rating and current rating is called power factor in electricalAnswerPower factor can be defined in a number of ways -for example:cosine of the phase angleratio of true power to apparent powerIt has nothing to do with the ratio of voltage rating to current rating!
The current's power factor is the true power divided by the apparent power. The Apparent Power is the volts multiplied by the amps. In this example, the ratio would be 200/253, or approximately .79.
The ratio of active power (real power) and apparent power is called power factor ( pf ). Power Factor ( pf ) = Active Power / Apparent Power = .................. ( kvar )
If a load takes 50 kW at a power factor of 0.5 lagging calculate the apparent power and reactive power Answer: Apparent power = Active power / Power Factor In this case, Active power = 50 kW and power factor = 0.5 So Apparent power = 50/0.5 = 100 KVA
Real Power: The actual power in Watts or K-Watts in AC or DC Circuits Apparent power: The Power in Inductive or Capacitive Circuits have Phase Lag & Lead measured in Volt Amperes VA or Kilo Volt Amperes KVA
to put out the power fector you have to divided apparent power with true power.AnswerYou can determine the true power of any load using a wattmeter. To find the apparent power, you use a voltmeter to measure the supply voltage and an ammeter to measure the load current, and multiply the two readings together.If you then want to go on to find the power factor, then you divide the true power by the apparent power. If you want to find the reactive power you use the following equation:(reactive power)2 = (true power)2 x (apparent power)2
The equation for power factor is PF = True power in watts/Apparent power in Volt Amps.
to put out the power fector you have to divided apparent power with true power.AnswerYou can determine the true power of any load using a wattmeter. To find the apparent power, you use a voltmeter to measure the supply voltage and an ammeter to measure the load current, and multiply the two readings together.If you then want to go on to find the power factor, then you divide the true power by the apparent power. If you want to find the reactive power you use the following equation:(reactive power)2 = (true power)2 x (apparent power)2
Power factor is truepower divide by apparent power.
Its function is to counteract the inductive component of the load to reduce the apparent power -- to minimize the phase difference of the voltage and current phasors. The electrical utility company charges more for low power factor, which is defined as the ratio of real to apparent power. Please see the related link. =================================
The FF is defined as the ratio of the maximum power of the solar cell divided by the product of Voc and Isc.