As we bring P type and N type semiconductors fused together, then rich holes in P type would get neutralized with some rich electrons in N type. Hence at the juntion region, there will not be charge carriers ie holes and electrons. So it is known as Depletion Region. Depletion means emptying something. In case of ordinary diode this depletion region would be wider where as in case of Zener Diode the depletion region would be narrower. This is because the semiconductors are heavily doped. Hence potential barrier would be easily built up even with a thin region where holes and electrons get combined for neutrelization.
0.1 micron
when the diode is applied forward bias voltage the width of depletion region gets reduced the barrier voltage decreases there by facilitating the easy exchange of holes and electrons. when the diode is reverse biased the width of depletion region increases there by hindering the flow or exchange of charge carriers.
i think in order to population inversion in depletion region. also the laser diodes must be degenerated.
Recombination in a diode is crucial because it facilitates the movement of charge carriers, enabling the diode to function effectively as a rectifier. In a p-n junction diode, when electrons from the n-type region recombine with holes in the p-type region, it creates a depletion region that allows current to flow in one direction while blocking it in the opposite direction. This process helps establish the diode's characteristic I-V curve, which is essential for controlling electrical current in circuits. Without recombination, the diode would not be able to regulate current flow properly.
When a diode passes from forward biased to reverse biased it takes a short period of time for the charge carriers in the vicinity of the junction to recombine and create a nonconducting depletion region. During this time period the diode conducts in the reverse direction, this is called the reverse recovery time. Its different for every kind of diode, to get the value for a specific diode consult the datasheet.
0.1 micron
depletion region
depletion layer depletion zone juntion region space charge region bipolar transistor field effect transistor variable capacitance diode
when the diode is applied forward bias voltage the width of depletion region gets reduced the barrier voltage decreases there by facilitating the easy exchange of holes and electrons. when the diode is reverse biased the width of depletion region increases there by hindering the flow or exchange of charge carriers.
A depletion region will form at the junction of a p-type and n-type semiconductor in a semiconductor diode. This region is depleted of charge carriers, creating an electric field that prevents further flow of current in the reverse bias direction.
they ARE, but only in close proximity (at the junction). this is what creates the depletion region around the junction: electrons being attracted to holes and falling in. once the depletion region gets wide enough attraction stops.
When a diode is made (ie. NO current pass through the diode) then depletion layer is form between N & P.
i think in order to population inversion in depletion region. also the laser diodes must be degenerated.
The depletion layer in a diode is thin because it forms due to the diffusion of charge carriers (electrons and holes) from the P-type and N-type regions. As charges diffuse, they create a region depleted of majority carriers, leading to the formation of the depletion layer. The thinness of the depletion layer allows for efficient blocking of current flow when the diode is in reverse bias.
S it has Clinton
Depletion region is the region where current carriers such as electrons and holes are absent.
The thickness of the depletion region or depletion layer (and there are other terms) varies as the design of the semiconductor. The layers in a semiconductor are "grown" (usually by deposition), and this can be controlled. The typical depletion region thickness in an "average" junction diode is about a micron, or 10-6 meters. Junction "construction" presents major engineering considerations to those who design and make semiconductors as there are many different kinds. A link is provided to the section on the width of depletion regions in the Wikipedia article on that topic.