answersLogoWhite

0

What else can I help you with?

Continue Learning about Engineering

What is vce and ie of a transistor?

A: Vce is the voltage across the transistor . Ie is the emitter current. Ico is the collector current with the base open. Or really the leakage.


Transistor as an amplifier common emitter configuration explanation using kirchhof's law?

Kirchoff's current law states that the current in every point in a series circuit is the same. In the case of a transistor in common emitter configuration, you can take advantage of that fact and state that the collector current is equal to the emitter current. The truth is somewhat different, because the gain of the transistor is not infinity, so the base current must be added to the emitter current. With a reasonably high gain, however, you can ignore the base current. Consider that the emitter voltage is related to the base voltage by the forward drop of the base-emitter junction, about 0.7 volts, and the collector and emitter currents are the same. Now look at the collector and emitter resistors. If the currents are the same, and the voltage across the emitter resistor is known, then you know the voltage across the collector resistor as well. This is an application of both Kirchoff's and Ohm's laws. The gain, then, of this amplifer is collector resistance divided by emitter resistance. It is an inverting amplier in this configuration. In some configurations, the emitter resistor is zero ohms. This does not mean the gain is infinity - it now means that the gain is limited by the gain of the transistor, which it is anyway - the emitter resistor is used to stabilize the gain and reduce dependency on individual transistor gains, which do vary.


When testing transistors how much minimum voltage difference should be seen across the base-emitter junction?

It depends on the transistor. Minimum base-emitter junction voltage can be as low as 0.6 volts for a silicon transistor, and as low as 0.2 volts for a germanium transistor.


How do NPN transistors work?

on or off


What is the purpose of a transistor in a circuit?

A transistor has three leads, called the base, the collector, and the emitter. The voltage of the base (in relation to the ground) determines whether and how much current flows from the collector to the emitter. An NPN transistor can be off, meaning that there is no (or very little) voltage from the base; partly on, meaning that there is some voltage from the base; or saturated, meaning that it is receiving full voltage from the base. A saturated transistor allows the current to flow from the collector to the emitter unopposed; a partly on transistor provides some resistance; and a transistor that is off provides full resistance. A PNP transistor is similar to an NPN transistor except it performs the opposite function: when it is saturated, the current is fully resisted; when there is no voltage from the base, the current is not at all resisted; and when it is partly on there is some resistance. In sum, a transistor controls the flow between the collector and the emitter based upon the voltage of the base. this is carbage. a transistor is basicaly two diodes back to back base being common TO BOTH DIODES because of inpurity doping on purpose at the depletion region the transistor will control the current flow on the other diode. Once it reaches saturation both diodes conduct therefore current can flow in BOTH DIRECTIONS ACROSS IT.

Related Questions

What is Collector Emitter saturation voltage?

Collector-emitter saturation voltage refers to the voltage drop across the collector-emitter junction of a transistor when the transistor is in saturation mode. It is the minimum voltage required to keep the transistor in saturation, where the transistor is fully turned on and conducting maximum current.


What is vce and ie of a transistor?

A: Vce is the voltage across the transistor . Ie is the emitter current. Ico is the collector current with the base open. Or really the leakage.


What is emitter biasing?

Emitter biasing is when you add a resistor between the emitter of a transistor and the 0v rail so that any voltage developed across the emitter will subtract from the voltage on the base and effectively turn the transistor OFF. We are talking about an NPN transistor and the transistor is an "ordinary transistor" or BJT (bi-polar Junction Transistor). For more information on transistor biasing see: Talking Electronics website.


Transistor as an amplifier common emitter configuration explanation using kirchhof's law?

Kirchoff's current law states that the current in every point in a series circuit is the same. In the case of a transistor in common emitter configuration, you can take advantage of that fact and state that the collector current is equal to the emitter current. The truth is somewhat different, because the gain of the transistor is not infinity, so the base current must be added to the emitter current. With a reasonably high gain, however, you can ignore the base current. Consider that the emitter voltage is related to the base voltage by the forward drop of the base-emitter junction, about 0.7 volts, and the collector and emitter currents are the same. Now look at the collector and emitter resistors. If the currents are the same, and the voltage across the emitter resistor is known, then you know the voltage across the collector resistor as well. This is an application of both Kirchoff's and Ohm's laws. The gain, then, of this amplifer is collector resistance divided by emitter resistance. It is an inverting amplier in this configuration. In some configurations, the emitter resistor is zero ohms. This does not mean the gain is infinity - it now means that the gain is limited by the gain of the transistor, which it is anyway - the emitter resistor is used to stabilize the gain and reduce dependency on individual transistor gains, which do vary.


What are the function of the transistor?

A transistor has three leads, called the base, the collector, and the emitter. The voltage of the base (in relation to the ground) determines whether and how much current flows from the collector to the emitter. An NPN transistor can be off, meaning that there is no (or very little) voltage from the base; partly on, meaning that there is some voltage from the base; or saturated, meaning that it is receiving full voltage from the base. A saturated transistor allows the current to flow from the collector to the emitter unopposed; a partly on transistor provides some resistance; and a transistor that is off provides full resistance. A PNP transistor is similar to an NPN transistor except it performs the opposite function: when it is saturated, the current is fully resisted; when there is no voltage from the base, the current is not at all resisted; and when it is partly on there is some resistance. In sum, a transistor controls the flow between the collector and the emitter based upon the voltage of the base. this is carbage. a transistor is basicaly two diodes back to back base being common TO BOTH DIODES because of inpurity doping on purpose at the depletion region the transistor will control the current flow on the other diode. Once it reaches saturation both diodes conduct therefore current can flow in BOTH DIRECTIONS ACROSS IT.


Why emitter bias circuit is called self bias?

The emitter bias circuit is called self-bias because the bias voltage across the emitter-resistor is based on the transistor's own characteristics. The bias voltage adjusts itself based on the varying collector current to stabilize the operating point of the transistor. It is a self-adjusting mechanism that helps maintain a stable bias point for the transistor.


When testing transistors how much minimum voltage difference should be seen across the base-emitter junction?

It depends on the transistor. Minimum base-emitter junction voltage can be as low as 0.6 volts for a silicon transistor, and as low as 0.2 volts for a germanium transistor.


How do NPN transistors work?

on or off


What is the purpose of a transistor in a circuit?

A transistor has three leads, called the base, the collector, and the emitter. The voltage of the base (in relation to the ground) determines whether and how much current flows from the collector to the emitter. An NPN transistor can be off, meaning that there is no (or very little) voltage from the base; partly on, meaning that there is some voltage from the base; or saturated, meaning that it is receiving full voltage from the base. A saturated transistor allows the current to flow from the collector to the emitter unopposed; a partly on transistor provides some resistance; and a transistor that is off provides full resistance. A PNP transistor is similar to an NPN transistor except it performs the opposite function: when it is saturated, the current is fully resisted; when there is no voltage from the base, the current is not at all resisted; and when it is partly on there is some resistance. In sum, a transistor controls the flow between the collector and the emitter based upon the voltage of the base. this is carbage. a transistor is basicaly two diodes back to back base being common TO BOTH DIODES because of inpurity doping on purpose at the depletion region the transistor will control the current flow on the other diode. Once it reaches saturation both diodes conduct therefore current can flow in BOTH DIRECTIONS ACROSS IT.


When temperature increases voltage across diode with constant current?

The voltage across a semiconductor diode (and across the base/emitter junction of a transistor) decreases as temperature increases:  the actual figure is -2mV/°C.


What component develops the output signal in a common emitter amplifier?

The voltage drop across the emitter-collector junction develops the output signal with the help of a resistor or two in series. The output is 'seen' at the collector.


How many volts do you need for a transistor to be fully on?

A: By saturating a transistor meaning forward bias the base to emitter the voltage across the collector and base should be very low . depending on current it can be .050 v to .5v reversing or removing the bias voltage this voltage should be the same as the rail