AdEnInE
Guanine is a complementary base for cytosine in DNA.
No, RNA nucleotides in transcription pair with complementary DNA nucleotides according to the base pairing rules (A-U, G-C), as opposed to replicating DNA in which DNA nucleotides pair with complementary DNA nucleotides (A-T, G-C).
Complementary
complementary nucleotides
During transcription, RNA polymerase catalyzes the synthesis of an RNA molecule by base-pairing complementary RNA nucleotides with the DNA template strand. This complementary base pairing allows the RNA nucleotides to be connected to the DNA template, forming a growing strand of RNA that is identical in sequence to the non-template DNA strand.
During DNA replication, a complementary nucleotide is added to each exposed base on the original DNA molecule. This process ensures the formation of two identical DNA molecules.
The presence of the nucleotides adenine (A) and thymine (T) in a DNA sequence signifies a complementary base pairing, where A always pairs with T.
During DNA replication, the enzyme DNA polymerase catalyses the formation of new strands of DNA, using the old strands as models. DNA has a double-helix structure, with two strands forming each helix. Each strand is made up of DNA nucleotides, with the genetic information encoded in the sequence of different nucleotides (different nucleotides are distinguished by molecules called 'bases' attached to them, so the sequence of nucleotides is known as the 'base sequence'). The base sequence of one strand is complementary to that of its' neighbour - the base A binds with T, and C with G, so if one strand had the sequence ATTACA, the base sequence of the complementary strand would be TAATGT. When DNA polymerase creates a new DNA strand, it does so by matching nucleotides to the base sequence of one of the strands - the template strand. New nucleotides are brought in, which match the template in a complementary fashion (ie. A-T, C-G), and join to become one new strand. This new strand is complementary to the template.
The enzyme responsible for incorporating new complementary DNA nucleotides into the growing strand is called DNA polymerase.
DNA polymerase adds nucleotides during DNA replication by recognizing the complementary base pairs on the template strand and adding corresponding nucleotides to the growing new strand. This process ensures accurate replication of the genetic information.
The enzyme that matches RNA nucleotides to complementary DNA nucleotides is called reverse transcriptase. It is used by retroviruses like HIV to convert their RNA genome into DNA before integrating it into the host cell's genome.
Adding base pairs to a strand refers to the process of DNA replication, where new nucleotides are paired with existing ones to create a complementary strand. This process is essential for cell division and genetic inheritance.