answersLogoWhite

0

During decision-making, information is processed to choose between two or more alternatives. This involves the interaction of excitatory and inhibitory neurons. This process also involves excitatory and inhibitory neurotransmitters. The post-synaptic action potential is determined by the sum of all signals.

User Avatar

Wiki User

10y ago

What else can I help you with?

Related Questions

What is the difference between EPSP and an IPSP?

An EPSP is an excitatory postsynaptic potential, which represent input coming from excitatory cells, whereas an inhibitory postsynaptic potential represents input driven by inhibitory presynaptic cells.


What determines if an action potential is initiated in the postsynaptic neuron?

Every time neurotransmitter is released from the presynaptic neuron it generates an excitatory post synaptic potential(EPSP) in the postsynaptic neuron. When the EPSP is greater than the threshold for excitation an action potential is generated.


Is a synapse is the functional connection between two neurons?

Yes, a synapse is the functional connection between two neurons, allowing them to communicate with each other. It typically consists of a presynaptic neuron, which releases neurotransmitters, and a postsynaptic neuron, which receives these signals. This interaction is crucial for transmitting information throughout the nervous system. Synapses can be excitatory or inhibitory, influencing the likelihood of the postsynaptic neuron firing an action potential.


When a neurotransmitter is released from a presynaptic neuron the neurotransmitter may?

When a neurotransmitter is released from a presynaptic neuron, it diffuses across the synaptic cleft and binds to specific receptors on the postsynaptic neuron. This binding can lead to the opening of ion channels, resulting in changes to the postsynaptic cell's membrane potential, which may generate an excitatory or inhibitory signal. Additionally, neurotransmitters can also activate intracellular signaling pathways or be taken back up by the presynaptic neuron for recycling. Ultimately, the release of neurotransmitters plays a crucial role in neuronal communication and the overall functioning of the nervous system.


If a neurotransmitter depolarizes the postsynaptic membrane it is referred to as?

Excitatory neurotransmitter.


What are the excitatory neurotranmitters?

Glutamic acid (glutamate) is probably the most abundant excitatory transmitter. Others can be excitatory, such as acetylcholine, and some peptides. Aspartate is also excitatory. Finally, serotonin is often found to be exctitatory.


When does a postsynaptic potential occur?

A postsynaptic potential occurs when neurotransmitters released from the presynaptic neuron bind to receptors on the postsynaptic neuron, causing a change in its membrane potential. This change can be either depolarizing (excitatory) or hyperpolarizing (inhibitory), influencing the likelihood of the postsynaptic neuron firing an action potential.


What is the action of dopamine on the postsynaptic membrane?

All neurotransmitters have an effect on the post synaptic membrane of either inhibition or excitation. Dopamine is an Excitatory NT so if a Excitatory Neuron meets with another Excitatory Neuron it creates Excitation. However if it meets with an Inhibitory Neuron Dopamine and the other Excitatory NT's wll only create Inhibition. Only GABA and Glycine are considered Inhhibitory NTransmitters.


What is excitatory messages?

There are two kinds of neurotransmitters - INHIBITORY and EXCITATORY. Excitatory neurotransmitters are not necessarily exciting - they are what stimulate the brain. Those that calm the brain and help create balance are called inhibitory. Inhibitory neurotransmitters balance mood and are easily depleted when the excitatory neurotransmitters are overactive.


What factor decreases the excitatory level of the spinal cord?

Fatigue decreases the excitatory level of the spinal cord


What is an event when one or more presynaptic neurons fire in rapid order it produces a much greater depolarization of the postsynaptic membrane than would result from a single ESPS?

This is known as temporal summation, where multiple action potentials from presynaptic neurons arrive in quick succession at a synapse, leading to an accumulation of excitatory postsynaptic potentials (EPSPs) that can reach the threshold for generating an action potential in the postsynaptic neuron. This process enhances synaptic transmission and the strength of the signal being transmitted.


Neurotransmitters find their way to and subsequently trigger firing of that neuron?

Excitatory neurotransmitter