answersLogoWhite

0


Best Answer

The waste from coal power stations has virtually no radioactive waste where as a

nuclear plants waste is nearly all toxic.

Completely Wrong. All coal waste is toxic. Coal fired power plants chuck out all the radioactive elements that were in the coal that was burned. This is fairly old news from the 70's. Excellent source: http://www.ornl.gov/info/ornlreview/rev26-34/text/colmain.html .

More facts that are totally ignored by the media as governors and industrial groups lobby to continue to launch toxic, hazardous and poisonous elements and compounds into the air from the stacks, and onto the land downwind.

The following is quoted. There is no copyright on this article at this website. Thanks to ORNL.

Web site provided by Oak Ridge National Laboratory's Communications and External Relations

ORNL is a multi-program research and development facility managed by UT-Battelle for the US Department of Energy

"Because existing coal-fired power plants vary in size and electrical output, to calculate the annual coal consumption of these facilities, assume that the typical plant has an electrical output of 1000 megawatts. Existing coal-fired plants of this capacity annually burn about 4 million tons of coal each year. Further, considering that in 1982 about 616 million short tons (2000 pounds per ton) of coal was burned in the United States (from 833 million short tons mined, or 74%), the number of typical coal-fired plants necessary to consume this quantity of coal is 154.

Using these data, the releases of radioactive materials per typical plant can be calculated for any year. For the year 1982, assuming coal contains uranium and thorium concentrations of 1.3 ppm and 3.2 ppm, respectively, each typical plant released 5.2 tons of uranium (containing 74 pounds of uranium-235) and 12.8 tons of thorium that year. Total U.S. releases in 1982 (from 154 typical plants) amounted to 801 tons of uranium (containing 11,371 pounds of uranium-235) and 1971 tons of thorium. These figures account for only 74% of releases from combustion of coal from all sources.

Releases in 1982 from worldwide combustion of 2800 million tons of coal totaled 3640 tons of uranium (containing 51,700 pounds of uranium-235) and 8960 tons of thorium.

Based on the predicted combustion of 2516 million tons of coal in the United States and 12,580 million tons worldwide during the year 2040, cumulative releases for the 100 years of coal combustion following 1937 are predicted to be:

U.S. release (from combustion of 111,716 million tons):

Uranium: 145,230 tons (containing 1031 tons of uranium-235)

Thorium: 357,491 tons

Worldwide release (from combustion of 637,409 million tons):

Uranium: 828,632 tons (containing 5883 tons of uranium-235)

Thorium: 2,039,709 tons

Radioactivity from Coal Combustion

The main sources of radiation released from coal combustion include not only uranium and thorium but also daughter products produced by the decay of these isotopes, such as radium, radon, polonium, bismuth, and lead. Although not a decay product, naturally occurring radioactive potassium-40 is also a significant contributor.

According to the National Council on Radiation Protection and Measurements (NCRP), the average radioactivity per short ton of coal is 17,100 millicuries/4,000,000 tons, or 0.00427 millicuries/ton. This figure can be used to calculate the average expected radioactivity release from coal combustion. For 1982 the total release of radioactivity from 154 typical coal plants in the United States was, therefore, 2,630,230 millicuries.

Thus, by combining U.S. coal combustion from 1937 (440 million tons) through 1987 (661 million tons) with an estimated total in the year 2040 (2516 million tons), the total expected U.S. radioactivity release to the environment by 2040 can be determined. That total comes from the expected combustion of 111,716 million tons of coal with the release of 477,027,320 millicuries in the United States. Global releases of radioactivity from the predicted combustion of 637,409 million tons of coal would be 2,721,736,430 millicuries.

For comparison, according to NCRP Reports No. 92 and No. 95, population exposure from operation of 1000-MWe nuclear and coal-fired power plants amounts to 490 person-rem/year for coal plants and 4.8 person-rem/year for nuclear plants. Thus, the population effective dose equivalent from coal plants is 100 times that from nuclear plants. For the complete nuclear fuel cycle, from mining to reactor operation to waste disposal, the radiation dose is cited as 136 person-rem/year; the equivalent dose for coal use, from mining to power plant operation to waste disposal, is not listed in this report and is probably unknown.

...

Although trace quantities of radioactive heavy metals are not nearly as likely to produce adverse health effects as the vast array of chemical by-products from coal combustion, the accumulated quantities of these isotopes over 150 or 250 years could pose a significant future ecological burden and potentially produce adverse health effects, especially if they are locally accumulated. Because coal is predicted to be the primary energy source for electric power production in the foreseeable future, the potential impact of long-term accumulation of by-products in the biosphere should be considered. "

Personally, more concerned about the complete waste slate, but the radioactive portion always deserves mention.

Simple search by high school chemistry students found the West Virginia coal trace elements shown in an average ppm for nearly 800 samples.

Antimony (Sb)

1.02

Arsenic (As)

17.13

Barium (Ba)

109.86

Beryllium (Be)

2.57

Bismuth (Bi)

0.32

Boron (B)

20.01

Bromine (Br)

23.88

Cadmium (Cd)

0.096

Cerium (Ce)

16.88

Cesium (Cs)

1.15

Chlorine (Cl)

959

Chromium (Cr)

17.85

Cobalt (Co)

7.41

Copper (Cu)

20.4

Dysprosium (Dy)

2.03

Erbium (Er)

1.09

Europium (Eu)

0.33

Fluorine (F)

62.68

Gadolinium (Gd)

1.46

Gallium (Ga)

6.45

Germanium (Ge)

3.09

Gold (Au)

6.062

Hafnium (Hf)

0.72

Holmium (Ho)

0.52

Indium (In)

0.91

Iridium (Ir)

0.95

Lanthanum (La)

9.23

Lead (Pb)

8.19

Lithium (Li)

19.09

Lutetium (Lu)

0.133

Manganese (Mn)

21.29

Mercury (Hg)

0.19

Molybdenum (Mo)

2.37

Neodymium (Nd)

8.65

Nickel (Ni)

13.99

Niobium (Nb)

3.21

Praseodymium (Pr)

3.11

Rhenium (Re)

0.57

Rubidium (Rb)

23.62

Samarium (Sm)

1.52

Scandium (Sc)

3.71

Selenium (Se)

4.2

Silver (Ag)

0.058

Strontium (Sr)

91.68

Tantalum (Ta)

0.195

Tellurium (Te)

0.083

Terbium (Tb)

0.261

Thallium (Tl)

1.194

Thorium (Th)

3.02

Thulium (Tm)

0.283

Tin (Sn)

2.2

Tungsten (W)

0.79

Uranium (U)

1.59

Vanadium (V)

24.36

Ytterbium (Yb)

0.8

Yttrium (Y)

7.53

Zinc (Zn)

14.97

Zirconium (Zr)

24.32

To determine emissions of these elements just follow the example above with the Thorium and Uranium and factor from those tons.

User Avatar

Wiki User

14y ago
This answer is:
User Avatar
More answers
User Avatar

Wiki User

14y ago

The fission products produced in the fuel through fission of U-235 and Pu-239 are very radioactive, with a large number of different isotopes of various half lives and types of radiation. When the fuel is removed for storage these are still contained in the fuel and will stay there as long as the fuel is stored intact. If there are any pinhole defects in the fuel cladding a small amount might leak out, so it is important to monitor the fuel storage, usually under water, for activity. The long term storage of such spent fuel is still undecided in the US.

Apart from this high level waste there will be small amounts of other waste, like slightly contaminated clothing, cleaning material, etc. This can be stored safely in a dry store which is probably a vault on the site.

This answer is:
User Avatar

User Avatar

Wiki User

13y ago

It depends upon the source products, but generally fission leads to more radioactive products that fusion. In fission, uranium-238 decays into a host of products, all of which are radio active. But eventually, those products will decay into lead-206, which is stable, however it will likely take millions of years.

.

In fusion, hydrogen-1 is fused into helium-4, which is stable.

This answer is:
User Avatar

User Avatar

Wiki User

12y ago

Yes coal is cheaper than nuclear power station because with nuclear they use it to make weapons and nuclear is a lot of money than coal

This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: Does nuclear fusion produce more radioactive waste than nuclear fision?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Music & Radio

Why do hydrogen bombs produce radioactive waste?

Although the name suggests that the bomb solely uses nuclear fusion to create mass destruction, a Hydrogen bomb actually contains both fission and fusion fuels. Since fusion requires such a high energy input to initiate, a fission bomb is required to detonate the fusion component of the Hydrogen bomb, thereby releasing nuclear waste and radiation.


Why would a fusion reactor produce less radioactive waste than a fission reactor?

In my understanding, this is because a fusion reactor reacts deuterium to produce helium, which is not radioactive, whereas a fission uses uranium or plutonium, for example, which may react to form various radioactive isotopes. A fusion reactor may contain small quantities of tritium, in which case a radioactive isotope of hydrogen may be produced, but given that the majority of reactions occurring involve solely the deuterium, there is less radioactive waste produced.


The difference between nuclear waste and nuclear weapons?

The exact contents of radioactive waste from a nuclear power plant and radioactive fallout from a nuclear weapon can vary widely but are likely to be similar in their primary isotopes.The major difference between the radioactive waste from a nuclear power plant and radioactive fallout from a nuclear weapon is that the waste is normally contained and will not enter the environment (unless an accident happens) while the fallout is dispersed into the environment and is carried by the wind (sometimes all the way around the world multiple times).


What percentage of nuclear power plants in operation today are based upon nuclear fusion?

None of them do.


Is fusion nuclear decay or nuclear synthesis?

Fusion is nuclear synthesis, combining atoms of lesser mass into atoms of greater mass. Decay is reducing the mass of larger (unstable) atoms to form atoms of lesser mass.

Related questions

Does fusion produce radioactive waste?

No. The products of nuclear fusion are not radioactive.


The two processes which produce nuclear changes are?

Fission & Fusion. I JUST now got an answer right by using this. Good Luck! :D Hope this was helpful.


Can americium produce nuclear fusion?

Americium was not tested to produce nuclear fusion.


Is an isotope formed in a nuclear reaction likely to be radioactive?

Not necessarily. The fusion reactions in the sun produce primarily helium-4 which is stable.


How do nuclear fusion differ fundamentally from nuclear fission?

Nuclear fusion doesn't produce energy.


Hydrogen bombs and stars both produce energy with nuclear?

Nuclear fusion.


What process provides the heat?

Three processes produce heat. Contraction, in both stars and planets; radioactive decay, in planets, and nuclear fusion, in stars.


What is the difference between nuclear fision and nuclear fusion?

fission is breaking big things up into smaller ones. fusion is joining little things together into bigger ones.


Why does a star produce light?

Because of nuclear fusion! The nuclear fusion releases energy which produces light.


What is combining nuclei of atoms to produce energy called?

That would be nuclear fusion, like what happens in stars, when two hydrogen nuclei combine to form a helium nucleus.


Does nuclear fusion produce much less energy per atom than nuclear fission?

Nuclear fusion produce energy 400 times more than nuclear fission for the same mass.


How does nuclear fusion generate the suns energy?

The Sun energy is from hydrogen fusion.